Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Сахарчук Елена Серитинги СТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ

Должность: Проректор по образовательной деятельности

ФЕДЕРАЦИИ

Дата подписания: 27.05.2024 18:40:28 Федеральное государственное бюджетное образовательное d37ecce2a38525810859f295de19f107b21a0 удреждение инклюзивного высшего образования

«Российский государственный университет социальных технологий» (ФГБОУ ИВО «РГУ СоцТех»)

	УТВЕРЖДАЮ
Проректор по образовательной	й деятельности
	Е.С. Сахарчук

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Б1.О.13 Теория вероятностей и математическая статистика наименование дисциплины

01.03.02 «Прикладная математика и информатика» шифр и наименование направления подготовки

Вычислительная математика и информационные технологии направленность (профиль)

Разработчик:			
<u>РГУ СоцТех, , доцент каф</u> место работы, зан	едры информационн	ых технологий	<u>й и кибербезопасности</u>
Ахмед	<u>ов Р.Э</u> « <u>31</u> » <u>03</u>	2024 г.	
подпись	Ф.И.О.		Дата
Фонд оценочных средств технологий и кибербезопа (протокол № 7 от «09»_	асности	оен на заседан	нии кафедры Информационных
на заседании Учебно-мет	одического совета Р	ГУ СоцТех	
(протокол № <u>3</u> от « <u>26</u> »	04 2024 г.)		
Согласовано: Представитель работодат или объединения работод			/ Ф.И.О/
		(должность, м	место работы)
		*	20 г.
И.Г. Д	І митриева	я и контроля	образовательной деятельности
«»20	J24 F.		
Начальник отдела коорди	нации и сопровожде енко С.В.	ния образоват	гельных программ
« <u></u> »20	024 г.		
Заведующий библиотекой	, 1		
	Ахтырская		
	024 г.		
Декан факультета цифров	вых технологий и ки	бербезопаснос	сти
	 Щиканов 		
« » 20	024 г.		

Содержание

1.	Паспорт фонда оценочных средств
	Перечень оценочных средств
	Описание показателей и критериев оценивания компетенций
4.	Методические материалы, определяющие процедуры оценивания результатов
	обучения, характеризующих этапы формирования компетенций
5.	Материалы для проведения текущего контроля и промежуточной
	аттестации

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Теория вероятностей и математическая статистика».

Оценочные средства составляются в соответствии с рабочей программой дисциплины и представляют собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.), предназначенных для измерения уровня достижения обучающимися установленных результатов обучения.

Оценочные средства используются при проведении текущего контроля успеваемости и промежуточной аттестации.

Таблица 1 - Перечень компетенций, формируемых в процессе освоения дисциплины

Код и содержание	Планируемые результаты обучения по дисциплине
компетенции	(модулю), характеризующие этапы формирования
	компетенций
ОПК-1. Способен	ОПК-1.1. Знает основы математики, физики, вычислительной
применять	техники и программирования.
фундаментальные знания,	ОПК-1.2. Умеет решать стандартные профессиональные
полученные в области	задачи с применением естественнонаучных и
математических и (или)	общеинженерных знаний, методов математического анализа
естественных наук, и	и моделирования.
использовать их в	ОПК-1.3. Владеет навыками теоретического и
профессиональной	экспериментального исследования объектов
деятельности	профессиональной деятельности.
ОПК-3. Способен	ОПК-3.1. Знает основы теории систем и системного анализа,
применять и	дискретной математики, теории вероятностей и
модифицировать	математической статистики, методов оптимизации и
математические модели	исследования операций, нечетких вычислений,
для решения задач в	математического и имитационного моделирования.
области	ОПК-3.2. Умеет применять методы теории систем и
профессиональной	системного анализа, математического, статистического и
деятельности	имитационного моделирования для автоматизации задач
	принятия решений в области профессиональной
	деятельности.
	ОПК-3.3. Владеет навыками проведения инженерных
	расчетов основных показателей результативности создания и
	применения информационных систем и технологий.

Конечными результатами освоения дисциплины являются сформированные когнитивные дескрипторы «знать», «уметь», «владеть», расписанные по отдельным компетенциям. Формирование дескрипторов происходит в течение всего семестра по этапам в рамках контактной работы, включающей различные виды занятий и самостоятельной работы, с применением различных форм и методов обучения (табл. 2).

Таблица 2 - Формирование компетенций в процессе изучения дисциплины:

Код компетенции	Уровень освоения компетенций	Индикаторы достижения компетенций	Вид учебных занятий ¹ , работы, формы и методы обучения, способствующие формированию и развитию компетенций ²	Контролируемые разделы и темы дисциплины ³	Оценочные средства, используемые для оценки уровня сформированности компетенции ⁴
$O\Pi K - 1$	***	Знает	т.		
ОПК – 3	уровень	Студент не способен самостоятельно выделять главные положения в изученном материале дисциплины. ОПК-1.1. Не знает основ математики, физики. ОПК-3.1. Не знает теорий систем и системного анализа, дискретной математики, теорий вероятностей и математической статистики, методов оптимизации и исследования операций, нечетких вычислений, математического и имитационного моделирования, основных теорем и формул математического анализа, геометрии, дискретной математики, дифференциальных	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 1. Случайные события. Раздел 2. Случайные величины. Раздел 3. Элементы математической статистики.	Текущий контроль – опрос, контрольная работа.

-

¹ Лекционные занятия, практические занятия, лабораторные занятия, самостоятельная работа...

² Необходимо указать активные и интерактивные методы обучения (например, интерактивная лекция, работа в малых группах, методы мозгового штурма и т.д.), способствующие развитию у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств.

³ Наименование темы (раздела) берется из рабочей программы дисциплины.

⁴ Оценочное средство должно выбираться с учетом запланированных результатов освоения дисциплины, например:

[«]Знать» – собеседование, коллоквиум, тест...

[«]Уметь», «Владеть» – индивидуальный или групповой проект, кейс-задача, деловая (ролевая) игра, портфолио.

Базовый уровень	уравнений, теоретических основ информатики, численных методов, функционального анализа. ОПК-1.1. Студент усвоил основное содержание материала дисциплины, но имеет пробелы в усвоении материала. ОПК-1.1. Студент имеет несистематизированные знания основ математики, физики. ОПК-3.1. Студент имеет несистематизированные знания основ теории систем и системного анализа, дискретной математики, теории вероятностей и математической статистики, методов оптимизации и исследования операций, нечетких вычислений, математического и	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 1. Случайные события. Раздел 2. Случайные величины. Раздел 3. Элементы математической статистики.	Текущий контроль – опрос, контрольная работа.
	имитационного моделирования, функционального анализа.			
Средний уровень	Студент способен самостоятельно выделять главные положения в изученном материале. ОПК-1.1. Знает основы математики, физики. ОПК-3.1. Знает основы теории систем и системного анализа, дискретной математики, теории вероятностей и математической статистики, методов оптимизации и исследования операций,	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 1. Случайные события. Раздел 2. Случайные величины. Раздел 3. Элементы математической статистики.	Текущий контроль — опрос, контрольная работа.

Высоки уровен	главные положения в изученном материале и способен дать краткую характеристику основным идеям проработанного материала дисциплины. ОПК-1.1. Знает основь	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 1. Случайные события. Раздел 2. Случайные величины. Раздел 3. Элементы математической статистики.	Текущий контроль – опрос, контрольная работа.
	математики, физики. ОПК-3.1. Знает основы теории систем и системного анализа дискретной математики, теории вероятностей и математической статистики, методов оптимизации и исследования операций нечетких вычислений математического и имитационного моделирования. Показывает глубокое знание и понимание основных теорем и формул			
	математического анализа геометрии, дискретной математики, дифференциальных уравнений, теоретических основ информатики, численных методов функционального анализа.			
<u> </u>	Умеет			
Базовы уровен	ь затруднения при решении	практические занятия,	Раздел 1. Случайные события. Раздел 2. Случайные	Текущий контроль – опрос, контрольная
	стандартных профессиональных	самостоятельная работа	величины.	работа.

	задач с применением естественнонаучных и общеинженерных знаний ОПК-3.2. Студент испытывает затруднения при применении методов теорий вероятностей и математической статистики. Имеет несистематизированные знания основных разделов дисциплины.	обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 3. Элементы математической статистики.	
Средний гровень	ОПК-1.2. Студент умеет решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, но допускает незначительные ошибки. ОПК-3.2. Студент умеет применять методы теории вероятностей и математической статистики, но допускает незначительные ошибки.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 1. Случайные события. Раздел 2. Случайные величины. Раздел 3. Элементы математической статистики.	Текущий контроль – опрос, контрольная работа.
Высокий гровень	ОПК-1.2. Студент умеет решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний. ОПК-3.2. Студент без затруднения умеет применять методы теории вероятностей и математической статистики. Владеет	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 1. Случайные события. Раздел 2. Случайные величины. Раздел 3. Элементы математической статистики.	Текущий контроль – опрос, контрольная работа.

Базовый уровень	ОПК-1.3. Студент владеет базовыми навыками теоретического и экспериментального исследования объектов профессиональной деятельности. ОПК-3.3. Студент владеет базовыми навыками проведения инженерных расчетов.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 1. Случайные события. Раздел 2. Случайные величины. Раздел 3. Элементы математической статистики.	Текущий контроль – опрос, контрольная работа.
Средний уровень	Студент способен самостоятельно выделять главные положения в изученном материале. ОПК-1.3. Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности. ОПК-3.3. Владеет базовыми навыками проведения инженерных расчетов.	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 1. Случайные события. Раздел 2. Случайные величины. Раздел 3. Элементы математической статистики.	Текущий контроль – опрос, контрольная работа.
Высокий уровень	Студент знает, понимает, выделяет главные положения в изученном материале и способен дать краткую характеристику основным идеям проработанного материала, показывает глубокое знание и понимание основных разделов дисциплины. ОПК-1.3. На высоком уровне владеет навыками теоретического и экспериментального исследования объектов	Лекционные и практические занятия, самостоятельная работа обучающихся, подготовка и сдача промежуточной аттестации.	Раздел 1. Случайные события. Раздел 2. Случайные величины. Раздел 3. Элементы математической статистики.	Текущий контроль – опрос, контрольная работа.

профессиональной деятельности.
ОПК-3.3. На высоком уровне
проведения инженерных расчетов.

2. ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ

Таблица 3

№	Наименование	Характеристика оценочного средства	Представление оценочного средства в ФОС
	оценочного средства		
1	Опрос	Средство контроля усвоения учебного материала темы,	Вопросы по темам/разделам дисциплины
		раздела или разделов дисциплины, организованное как	
		учебное занятие в виде собеседования преподавателя с	
		обучающимися.	
2	Контрольная работа	Средство проверки умений применять полученные знания	Комплект контрольных заданий по вариантам
		для решения задач определенного типа по теме или разделу	

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Оценивание результатов обучения по дисциплине Алгебра и геометрия осуществляется в соответствии с Положением о текущем контроле успеваемости и промежуточной аттестации обучающихся.

Предусмотрены следующие виды контроля: текущий контроль (осуществление контроля всех видов аудиторной и внеаудиторной деятельности обучающегося с целью получения первичной информации о ходе усвоения отдельных элементов содержания дисциплины) и промежуточная аттестация (оценивается уровень и качество подготовки по дисциплине в целом).

Показатели и критерии оценивания компетенций, формируемых в процессе освоения данной дисциплины, описаны в табл. 4.

Таблица 4.

Код компетенции	Уровень освоения компетенции	Индикаторы достижения компетенции	Критерии оценивания результатов обучения
ОПК-1		Знает	
ОПК-3	Недостаточный уровень Оценка «неудовлетворительно»	ОПК-1.1. ОПК-3.1.	Не знает значительной части материала курса, не способен самостоятельно выделять главные положения в изученном материале дисциплины
	Базовый уровень Оценка, «удовлетворительно»	ОПК-1.1. ОПК-3.1.	Знает не менее 50 % основного материала курса, однако испытывает затруднения в его применении
	Средний уровень Оценка «хорошо»	ОПК-1.1. ОПК-3.1.	Знает основную часть материала курса, способен применить изученный материал на практике, испытывает незначительные затруднения в решении задач
	Высокий уровень Оценка «отлично»	ОПК-1.1. ОПК-3.1.	Показывает глубокое знание и понимание материала, способен применить изученный материал на практике
		Умеет	
	Базовый уровень	ОПК-1.2 ОПК-3.2.	Умеет воспроизвести не менее 50 % основного материала курса, однако испытывает затруднения при решении практических задач
	Средний уровень	ОПК-1.2 ОПК-3.2.	Умеет решать стандартные профессиональные задачи с применением полученных знаний, испытывает незначительные затруднения в решении задач
	Высокий уровень	ОПК-1.2 ОПК-3.2.	Умеет решать стандартные профессиональные задачи с применением полученных знаний, показывает глубокое знание и понимание материала, способен решить задачу при изменении формулировки
		Владеет	
	Базовый уровень	ОПК-1.3. ОПК-3.3.	Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности, усвоил основное содержание материала дисциплины, но имеет пробелы в усвоении материала. Имеет несистематизированные знания основных разделов дисциплины.
	Средний уровень	ОПК-1.3. ОПК-3.3.	Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности, способен самостоятельно выделять главные положения в изученном материале. Испытывает незначительные затруднения в решении задач.
	Высокий уровень	ОПК-1.3. ОПК-3.3.	Свободно владеет навыками теоретического и экспериментального исследования, показывает глубокое знание и понимание изученного материала

4. Методические материалы, определяющие процедуры оценивания результатов обучения

Задания в форме устного опроса:

Опрос используется для текущего контроля успеваемости обучающихся по дисциплине в качестве проверки результатов освоения терминологии. Каждому студенту выдается свой собственный, узко сформулированный вопрос. Ответ должен быть четким и кратким, содержащим все основные характеристики описываемого понятия, института, категории.

Контрольная работа

Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу

5. Материалы для проведения текущего контроля и промежуточной аттестации

Задания в форме устного опроса

Раздел 1. Случайные события

- 1) Случайные события.
- 2) Основные понятия теории вероятностей.
- 3) Теоремы сложения вероятностей и их основные следствия.
- 4) Теоремы умножения вероятностей и их основные следствия.
- 5) Формулы Байеса.

Раздел 2. Случайные величины

- 1) Случайные величины.
- 2) Математическое ожидание.
- 3) Дисперсия дискретной случайной величины.
- 4) Закон больших чисел.
- 5) Функция распределения вероятностей случайной величины.
- 6) Нормальное и показательное распределение.
- 7) Система двух случайных величин.

Раздел 3. Элементы математической статистики

- 1) Элементы математической статистики.
- 2) Выборочный метод.
- 3) Статистические оценки основных параметров распределения.
- 4) Метод расчёта сводных характеристик выборки.
- 5) Элементы теории корреляции.
- 6) Статистическая проверка статистических гипотез.
- 7) Метод Монте-Карло. Цепи Маркова.

Контролируемые компетенции: ОПК-1, ОПК-3

Оценка компетенций осуществляется в соответствии с таблицей 4.

Контрольные задания:

- 1. Тестовый вопрос 1:
- а) вариант ответа 1;
- б) вариант ответа 2;
- в) вариант ответа 3;
- г) вариант ответа 4;
- 2. Тестовый вопрос 2:
- а) вариант ответа 1;
- б) вариант ответа 2;
- в) вариант ответа 3;
- г) вариант ответа 4;
- 3. Тестовый вопрос 3:
- а) вариант ответа 1;
- б) вариант ответа 2;
- в) вариант ответа 3;
- г) вариант ответа 4;

Вопросы к зачету.

0. Элементы комбинаторики – перестановки, размещения, сочетания.

Случайные события.

Тема 1. Основные понятия теории вероятностей.

- 1. Испытания и события.
- 2. Виды случайных событий.
- 3. Классическое определение вероятности.
- 4. Статистическое определение вероятности понятие относительной частоты.
- 5. Геометрические вероятности.

Тема 2. Правила сложения и умножения вероятностей и их следствия.

- 6. Теорема сложения вероятностей несовместных событий.
- 7. Полная группа событий.
- 8. Противоположные события.
- 9. Понятие произведения событий. Понятие условной вероятности. Теорема о вычислении условной вероятности.
 - 10. Теорема умножения вероятностей.
- 11. Понятие независимости событий. Теорема умножения для независимых событий.
 - 12. Вероятность появления хотя бы одного события.
- 13. Следствия теорем сложения и умножения теорема сложения вероятностей совместных событий.
 - 14. Формула полной вероятности.
 - 15. Формула Байеса.

Тема 3. Повторные испытания.

- 16. Повторные испытания формула Бернулли.
- 17. Локальная теорема Лапласа.
- 18. Интегральная теорема Лапласа.
- 19. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях.

Случайные величины

Тема 1. Дискретные случайные величины и их числовые характеристики.

- 20. Понятие случайной величины.
- 21. Дискретные и непрерывные случайных величин.
- 22. Закон распределения вероятностей дискретной случайной величины.
- 23. Примеры дискретных случайных величин: а) биномиальное распределение;
 - б) распределение Пуассона;
 - в) геометрическое распределение.
- 24. Математическое ожидание дискретной случайной величины.
- 25. Свойства математическое ожидания дискретной случайной величины.
- 26. Примеры вычисления математического ожидания дискретной случайной величины.
- а) биномиальное распределение математическое ожидание числа появления событий в независимых испытаниях;
 - б) распределение Пуассона;
 - в) геометрическое распределение.
 - 27. Дисперсия дискретной случайной величины.
 - 28. Формула для вычисления дисперсии.
 - 29. Свойства дисперсии дискретной случайной величины.
 - 30. Примеры вычисления дисперсии дискретной случайной величины.
- а) биномиальное распределение математическое ожидание числа появления событий в независимых испытаниях;
 - б) распределение Пуассона;
 - в) геометрическое распределение.
 - 31. Среднее квадратичное отклонение случайной величины.

Тема 2. Закон больших чисел.

- 32. Неравенство Чебышева.
- 33. Теорема Чебышева.
- 34. Теорема Бернулли.

Вопросы к экзамену

Тема 3. Непрерывные случайные величины и их числовые характеристики.

- 35. Функция распределения вероятностей случайной величины. Понятие непрерывной случайной величины.
 - 36. Свойства функции распределения.
- 37. Плотность распределения вероятностей непрерывной случайной величины и ее свойства.
- 38. Вероятность попадания непрерывной случайной величины в заданный интервал.
- 39. Нахождение функции распределения вероятностей по известной плотности распределения.
- 40. Числовые характеристики непрерывных случайных величин математическое ожидание, дисперсия и средне квадратичное отклонение. Свойства.
 - 41. Закон равномерного распределения вероятностей.
 - 42. Показательное распределение вероятностей.
- 43. Нормальное распределение плотность распределения вероятностей, график плотности распределения нормальная кривая.
 - 44. Математическое ожидание нормально распределенной случайной величины.

- 45. Дисперсия нормально распределенной случайной величины. Средне квадратичное отклонение.
- 46. Вероятность попадания нормально распределенной случайной величины в заданный интервал.
- 47. Вероятность заданного отклонения нормально распределенной случайной величины. Правило трех сигм.

Тема 4. Системы двух случайных величин.

- 48. Понятие о системе двух случайных величин.
- 49. Закон распределения вероятностей дискретной двумерной случайной величины.
- 50. Функция распределения вероятностей двумерной случайной величины.
- 51. Свойства функция распределения вероятностей двумерной случайной величины.
 - 52. Вероятность попадания случайной точки в полуполосу.
 - 53. Вероятность попадания случайной точки в прямоугольник.
- 54. Понятие непрерывной двумерной случайной величины. Плотность распределения вероятностей двумерной случайной величины.
- 55. Нахождение функция распределения вероятностей двумерной случайной величины по известной плотности распределения.
 - 56. Вероятность попадания случайной точки в произвольную область.
 - 57. Свойства двумерной плотности распределения вероятностей.
- 58. Отыскание плотностей вероятности составляющих двумерной случайной величины.
- 59. Условные законы распределения составляющих двумерной дискретной случайной величины.
- 60. Условные законы распределения составляющих двумерной непрерывной случайной величины.
 - 61. Зависимость и независимость случайных величин.
 - 62. Условное математическое ожидание.
- 63. Числовые характеристики системы двух случайных величин. Корреляционный момент, коэффициент корреляции.
 - 64. Коррелированность и зависимость случайных величин.
- 65. Понятие о линейной регрессии. Прямые линии среднеквадратической регрессии.
 - 66. Линейная корреляция. Нормальная корреляция.

Вопросы к курсу «Математическая статистика» – IV семестр

Введение. Задачи математической статистики. Основные направления, методы и цель исследований.

Тема 1. Выборочный метод.

- 1. Генеральная и выборочная совокупности.
- 2. Повторная и бесповторная выборки. Репрезентативная выборка.
- 3. Способы отбора.
- 4. Статистическое распределение выборки (статистический ряд).
- 5. Эмпирическая (статистическая) функция распределения.
- 6. Полигон частот и гистограмма.

Тема 2. Статистические оценки параметров распределения.

- 7. Статистические оценки параметров распределения.
- 8. Критерий качества оценок несмещенность, эффективность и состоятельность.

- 9. Генеральная средняя.
- 10. Выборочная средняя.
- 11. Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних.
 - 12. Групповая и общая средние.
 - 13. Отклонение от общей средней и его свойство.
 - 14. Генеральная дисперсия.
 - 15. Выборочная дисперсия.
 - 16. Формула для вычисления дисперсии.
 - 17. Оценка генеральной дисперсии по исправленной выборочной.
- 18. Групповая, внутригрупповая, межгрупповая и общая дисперсии. Сложение дисперсий.
- 19. Интервальные оценки неизвестных параметров распределения. Точность оценки, доверительная вероятность (надежность). Доверительный интервал.
- 20. Доверительные интервалы для оценки математического ожидания нормального распределения при известном среднем квадратическом отклонении.
- 21. Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном среднем квадратическом отклонении.
- 22. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.
- 23 Оценка вероятности биномиального распределения по относительной частоте. Точечная оценка. Интервальная оценка.
 - 24. Метод моментов для точечной оценки параметров распределения.
- 25. Метод максимального правдоподобия для точечной оценки параметров распределения.

Тема 3. Статистическая проверка статистических гипотез.

- 26. Статистическая гипотеза. Виды статистических гипотез: нулевая и конкурирующая, простая и сложная, параметрическая и непараметрическая.
 - 27. Ошибки первого и второго родов.
 - 28. Статистический критерий проверки гипотез. Наблюдаемое значение критерия.
 - 29. Критическая область. Критические точки. Область принятия гипотезы.
 - 30. Построение правосторонней критической области.
 - 31. Построение левосторонней и двусторонней критических областей.
- 32. Дополнительные сведенья о выборе критической области. Уровень значимости критерия. Мощность критерия. Алгоритм проверки статистических гипотез.
 - 33. Сравнение двух дисперсий нормальных генеральных совокупностей.
- 34. Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности.
- 35. Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны (независимые испытания).
- 36. Связь между двусторонней критической областью и доверительным интервалом. Оценка объема выборки при сравнении выборочной и гипотетической генеральной средних.
- 37. Проверка гипотез о равенстве выборочных характеристик соответствующим параметрам гипотетической генеральной совокупности, о согласии эмпирического и теоретического распределений.

Контролируемые компетенции: ОПК-1, ОПК-3

Оценка компетенций осуществляется в соответствии с таблицей 4.

Вариант 1

- 1. В ящике 12 деталей, из которых 3 деформированы. Сборщик наудачу взял 3 детали. Найти вероятность того, что среди взятых деталей окажется
 - а) ровно 1 деформированная деталь;
 - б) хотя бы одна деформированная деталь.
- 2. Два автомата производят одинаковые детали, которые поступают на общий конвейер. Известно, что первый автомат выпускает 45% от общего числа деталей, причем процент брака на первом автомате составляет 8%, а на втором 12%. Какова вероятность того, что наудачу взятая деталь с конвейера окажется годной?
- 3. Вероятность рождения мальчика равна 0,515. Найти вероятность того, среди 1000 новорожденных мальчиков будет не менее 530.

Вариант 2

- 1. Ребенок играет с 10 буквами разрезной азбуки: Л, Л, А, А, А, П, О, Н, И, У. Наудачу отбираются 4 карточки. Какова вероятность того, что выложенные в ряд карточки образуют слово «ЛУНА»?
- 2. Из колоды карт (36 штук) случайным образом извлекаются две карты и выбрасываются. Найти вероятность того, что следующая извлеченная карта будет масти треф.
 - 3. Монету подбрасывают 12 раз. Найти вероятность того, что герб выпадет:
 - а) ровно 7 раз;
 - б) от 5 до 8 раз.

Вариант 3

- 1. Среди 25 экзаменационных билетов 10 «счастливых». Какова вероятность того, что среди трех первыми зашедших студентов:
 - а) двое будут иметь «счастливые» билеты;
 - б) все будут иметь «счастливые» билеты;
 - в) хотя бы один будет иметь «счастливый» билет.
- 2. Код состоит из 6 цифр. Найти вероятность того, что первые три цифры наудачу придуманного кода различны, предполагая, что каждая цифра может иметь 10 значений (от 0 до 9).
- 3. В ящик, содержащем 5 шаров, из которых по крайней мере 3 белых, брошен черный шар. Найти вероятность, что извлеченный наудачу шар окажется белым.

- 1. Из колоды карт (36 штук) случайным образом извлекаются три карты . Найти вероятность того, что
 - а) все они будут масти треф;
 - б) две будут масти треф;
 - в) хотя бы одна будет масти треф.
- 2. Имеется 2 коробки с шарами по 20 в каждой. Известно, что в первой коробке 5 белых шара, во второй 10. Из первого ящика наудачу извлекается один шар и

перекладывается во второй. Найти вероятность извлечь после перекладывания из второго ящика белый шар.

3. Известно, что на поле у 2% кустов картофеля стебли поражены фитофторой. Найти вероятность того, что из 400 кустов картофеля этого поля фитофторой будут поражены не более 5 кустов.

Вариант 5

- 1. В партии из 8 деталей 3 бракованных. Какова вероятность того, что из 4 наудачу взятых деталей:
 - а) все окажутся годными;
 - б) будет хотя бы одна бракованная.
- 2. Из колоды карт (36 штук) наудачу поочередно вынимают три карты. Найти вероятность того, что:
 - а) все три карты будут масти пик;
 - в) первая из карт будет масти пик.
- 3. Вероятность неточной сборки прибора равна 0,2. Найти вероятность того, что среди 500 приборов окажется от 410 до 430 точных.

Вариант 6

- 1. В лотерее 100 билетов, из них 40 выигрышных. Какова вероятность того, что: из трех наудачу купленных билетов:
 - а) ровно 1 окажется выигрышным;
 - б) все три окажутся выигрышными.
- 2. Некто покупает по одному билету трех лотерей. Известно, что в первой лотерее билет выигрывает с вероятностью 0,05, во второй с вероятностью 0,1, а в третьей с вероятностью 0,12. Какова вероятность того, что
 - а) выигрышным будет только один билет;
 - б) будет хотя бы один выигрышный билет.
- 3. Найти вероятность того, что среди 150 лампочек 88 окажется высшего сорта, если при проверке 10 лампочек 6 штук оказалось высшего сорта?

Вариант 7

- 1. Для дачи крови в поликлинику пришли 12 доноров, из которых 5 имеют первую группу крови, 3 вторую, остальные третью. Какова вероятность того, что:
 - а) первый сдавший кровь имеет третью группу крови;
 - б) двое первых сдавших кровь будут иметь первую группу крови.
- 2. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором, третьем справочниках, соответственно равны 0,4, 0,6, 0,9. Найти вероятность того, что нужная формула содержится:
 - а) только в одном справочнике;
 - б) во всех справочниках;
 - в) ни в одном из справочников.
- 3. Вероятность смерти на 21-м году жизни равна 0,006. Застрахована группа в 1000 человек в возрасте 20 лет. Какова вероятность того, что в течение года умрут:
 - а) ровно 4 застрахованных;
 - б) менее 3 застрахованных.

- 1. Из коробки, содержащей 20 деталей, из которых 5 дефектных, наудачу были извлечены 4 детали. Какова вероятность того, что:
 - а) все извлеченные детали годные;
 - б) две детали оказались дефектными.
- 2. Вероятности допущения ошибок при измерениях некоторого параметра равны соответственно: 0,1 при первом измерении, 0,08 при втором, 0,05 при третьем. Найти вероятность того, что:
 - а) все измерения были проведены без ошибок;
 - б) при измерениях была допущена ровно 1 ошибка;
 - в) была допущена хотя бы одна ошибка.
 - 3. Известно, что 92% всего числа изготовленных заводом покрышек является продукцией первого сорта. Определить вероятность того, что среди 500 купленных покрышек от 450 до 475 будут первосортными.

Вариант 9

- 1. В бригаде работают 10 мужчин и 12 женщин. На срочную работу наудачу назначают 4 человека. Какова вероятность того, что среди выбранных окажется:
 - а) не менее 3 женщин;
 - б) хотя бы один мужчина.
- 2. Две машинистки печатают одну статью и складывают вместе. Производительность первой машинистки вдвое больше производительности второй. Вероятность того, что первая машинистка допустит ошибку, равна 0,05, а вторая 0,1. Найти вероятность того, что наудачу выбранный лист не содержит ошибки.
- 3. Вероятность попадания в цель при одном выстреле равна 0,6. Найти вероятность того, что число попаданий при 600 выстрелах будет заключено в пределах от 330 до 375.

Вариант 10

- 1. Из колоды карт (36 штук) наудачу выбирают 4 карты. Какова вероятность того, что среди них окажется:
 - а) один туз;
 - б) хотя бы один туз.
- 2. Имеется 3 коробки с шарами. В первой 20 шаров, из которых 10 белых, во второй 15 шаров, из которых 5 белых, в третьей 15 шаров, из которых 12 белых. Из первой и второй коробок наудачу извлекают по одному шару и перекладывают в третью коробку. Какова вероятность извлечь после этого белый шар из третьей коробки.
- 3. Какова вероятность, что при 200 бросаниях монеты герб появится от 95 до 110 раз?

Вариант 1

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется 20 перфокарт, 5 из них содержат ошибки. Взяли 5 перфокарт. X — число перфокарт с ошибками.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} x^2 + a, & x \in (0;2); \\ 0, & \text{иначе} \end{cases}$$
 a - ?

3. Химический завод изготовляет серную кислоту номинальной плотности 1.84 г/см.кв. Практически 99.9% всех выпускаемых реактивов имеют плотность в интервале (1.82; 1.86). Найти вероятность того, что кислота удовлетворяет стандарту, если для этого достаточно, чтобы ее плотность не отклонялась от номинала более, чем на 0.01 г/см.кв. Предполагается, что плотность кислоты имеет нормальное распределение.

Вариант 2

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0.9. В каждой партии содержится 5 изделий. X – число партий, в каждой из которых окажется ровно 4 стандартных изделия, если проверке подлежат 50 партий.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 1 - a/x^2, & x \ge 1; \\ 0, & x < 1 \end{cases}$$
 a - ?

3. В нормально распределенной совокупности 25% значений X меньше 0 и 40% значений X больше 2. Найти среднее значение и стандартное отклонение данного распределения.

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| \le \delta)$ и $p(|X-m| \le 3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется 10 перфокарт. 3 из них содержат ошибки. Берут перфокарты одну за другой, пока встретится перфокарта с ошибкой. X – число взятых перфокарт.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} x^2 + ax, & x \in (0;1); \\ 0, & \text{иначе} \end{cases}$$
 a - ?

3. В нормально распределенной совокупности 15% значений X меньше 12 и 40% значений X больше 16.2. Найти среднее значение и стандартное отклонение данного распределения.

Вариант 4

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

В партии из 10 деталей содержится 3 нестандартных. Наудачу отобраны 2 детали. X – число нестандартных деталей среди 2 отобранных.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 1 - A^{-x/t} & (t > 0), \ x \ge 0; \\ 0, \ x < 0 & \text{A - ?} \end{cases}$$

3. Случайная величина X имеет нормальное распределение с математическим ожиданием M=0. Вероятность попадания X в интервал (0, 2) равна 0.4. Чему равна вероятность попадания X в интервал (0, 1)?

Вариант 5

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

В группе из 24 человек 5 отличников, 15 хорошистов. Группу разделили пополам. X – число студентов без «3» в первой подгруппе.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| \le \delta)$ и $p(|X-m| \le 3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} cx^3, & x \in (0;1); \\ 0, & \text{иначе} \end{cases}$$
 c - ?

3. Коробки с шоколадом упаковываются автоматически. Их средняя масса равна 1.06 кг. Известно, что 5% коробок имеют массу, меньшую 1 кг. Каков % коробок, масса которых превышает 940 г, если вес коробок — случайная величина, распределенная по нормальному закону?

Вариант 6

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется n заготовок для одной и той же детали. Вероятность изготовления годной детали из каждой заготовки равна p. X — случайное число используемых заготовок.

2. Для заданной непрерывной случайной величины X:

- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| \le \delta)$ и $p(|X-m| \le 3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 0, & x \le 2; \\ 0.5x - b, & 2 < x \le 4; \\ 1, & x > 4 \end{cases}$$
 b - ?

3. Случайная величина X имеет нормальное распределение N(1,1). Что больше: вероятность попадания X в интервал (-1,0) или в интервал (0,0.5)?

Вариант 7

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется 20 перфокарт, 5 из них содержат ошибки. Взяли 5 перфокарт. X — число перфокарт с ошибками.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m| < \delta)$ и $p(|X-m| < 3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 1 - a/x^2, & x \ge 1; \\ 0, & x < 1 \end{cases}$$
 a - ?

3. В нормально распределенной совокупности 15% значений X меньше 12 и 40% значений X больше 16.2. Найти среднее значение и стандартное отклонение данного распределения.

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);

- г) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

В группе из 24 человек 5 отличников, 15 хорошистов. Группу разделили пополам. X – число студентов без «3» в первой подгруппе.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} x^2 + a, & x \in (0;2); \\ 0, & \text{иначе} \end{cases}$$
 a - ?

3. В нормально распределенной совокупности 25% значений X меньше 0 и 40% значений X больше 2. Найти среднее значение и стандартное отклонение данного распределения.

Вариант 9

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется n заготовок для одной и той же детали. Вероятность изготовления годной детали из каждой заготовки равна p. X — случайное число используемых заготовок.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} cx^3, & x \in (0;1); \\ 0, & \text{иначе} \end{cases}$$
 c - ?

3. Химический завод изготовляет серную кислоту номинальной плотности 1.84 г/см.кв. Практически 99.9% всех выпускаемых реактивов имеют плотность в интервале (1.82; 1.86). Найти вероятность того, что кислота удовлетворяет стандарту, если для этого

достаточно, чтобы ее плотность не отклонялась от номинала более, чем на 0.01 г/см.кв. Предполагается, что плотность кислоты имеет нормальное распределение.

Вариант 10

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

В партии из 10 деталей содержится 3 нестандартных. Наудачу отобраны 2 детали. X – число нестандартных деталей среди 2 отобранных.

- 2. Для заданной непрерывной случайной величины Х:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 0, & x \le 2; \\ 0.5x - b, & 2 < x \le 4; & b - ? \\ 1, & x > 4 \end{cases}$$

3. Коробки с шоколадом упаковываются автоматически. Их средняя масса равна 1.06 кг. Известно, что 5% коробок имеют массу, меньшую 1 кг. Каков % коробок, масса которых превышает 940 г, если вес коробок – случайная величина, распределенная по нормальному закону?

Вариант 11

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется 10 перфокарт. 3 из них содержат ошибки. Берут перфокарты одну за другой, пока встретится перфокарта с ошибкой. X – число взятых перфокарт.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);

- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 1 - A^{-x/t} & (t > 0), \ x \ge 0; \\ 0, \ x < 0 \end{cases}$$
 A - ?

3. Случайная величина X имеет нормальное распределение N(1,1). Что больше: вероятность попадания X в интервал (-1,0) или в интервал (0,0.5)?

Вариант 12

- 1. Для заданной дискретной случайной величины Х:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0.9. В каждой партии содержится 5 изделий. X – число партий, в каждой из которых окажется ровно 4 стандартных изделия, если проверке подлежат 50 партий.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- г) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} x^2 + ax, & x \in (0;1); \\ 0, & \text{иначе} \end{cases}$$
 a - ?

3. Случайная величина X имеет нормальное распределение с математическим ожиданием M=0. Вероятность попадания X в интервал (0,2) равна 0.4. Чему равна вероятность попадания X в интервал (0,1)?

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- г) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;

д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется 20 перфокарт, 5 из них содержат ошибки. Взяли 5 перфокарт. X — число перфокарт с ошибками.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} x^2 + a, & x \in (0;2); \\ 0, & \text{иначе} \end{cases}$$
 a - ?

3. Химический завод изготовляет серную кислоту номинальной плотности 1.84 г/см.кв. Практически 99.9% всех выпускаемых реактивов имеют плотность в интервале (1.82; 1.86). Найти вероятность того, что кислота удовлетворяет стандарту, если для этого достаточно, чтобы ее плотность не отклонялась от номинала более, чем на 0.01 г/см.кв. Предполагается, что плотность кислоты имеет нормальное распределение.

Вариант 14

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0.9. В каждой партии содержится 5 изделий. X – число партий, в каждой из которых окажется ровно 4 стандартных изделия, если проверке подлежат 50 партий.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 1 - a/x^2, & x \ge 1; \\ 0, & x < 1 \end{cases}$$
 a - ?

3. В нормально распределенной совокупности 25% значений X меньше 0 и 40% значений X больше 2. Найти среднее значение и стандартное отклонение данного распределения.

Вариант 15

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется 10 перфокарт. 3 из них содержат ошибки. Берут перфокарты одну за другой, пока встретится перфокарта с ошибкой. X – число взятых перфокарт.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} x^2 + ax, & x \in (0;1); \\ 0, & \text{иначе} \end{cases}$$
 a - ?

3. В нормально распределенной совокупности 15% значений X меньше 12 и 40% значений X больше 16.2. Найти среднее значение и стандартное отклонение данного распределения.

Вариант 16

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

В партии из 10 деталей содержится 3 нестандартных. Наудачу отобраны 2 детали. X – число нестандартных деталей среди 2 отобранных.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);

- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 1 - A^{-x/t} & (t > 0), \ x \ge 0; \\ 0, \ x < 0 \end{cases}$$
 A - ?

3. Случайная величина X имеет нормальное распределение с математическим ожиданием M=0. Вероятность попадания X в интервал (0, 2) равна 0.4. Чему равна вероятность попадания X в интервал (0, 1)?

Вариант 17

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- г) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

В группе из 24 человек 5 отличников, 15 хорошистов. Группу разделили пополам. X – число студентов без «3» в первой подгруппе.

- 2. Для заданной непрерывной случайной величины Х:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} cx^3, & x \in (0;1); \\ 0, & \text{иначе} \end{cases}$$
 c - ?

3. Коробки с шоколадом упаковываются автоматически. Их средняя масса равна 1.06 кг. Известно, что 5% коробок имеют массу, меньшую 1 кг. Каков % коробок, масса которых превышает 940 г, если вес коробок — случайная величина, распределенная по нормальному закону?

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- г) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется n заготовок для одной и той же детали. Вероятность изготовления годной детали из каждой заготовки равна p. X — случайное число используемых заготовок.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 0, & x \le 2; \\ 0.5x - b, & 2 < x \le 4; & b - ? \\ 1, & x > 4 \end{cases}$$

3. Случайная величина X имеет нормальное распределение N(1,1). Что больше: вероятность попадания X в интервал (-1,0) или в интервал (0,0.5)?

Вариант 19

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется 20 перфокарт, 5 из них содержат ошибки. Взяли 5 перфокарт. X — число перфокарт с ошибками.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- г) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 1 - a/x^2, & x \ge 1; \\ 0, & x < 1 \end{cases}$$
 a - ?

3. В нормально распределенной совокупности 15% значений X меньше 12 и 40% значений X больше 16.2. Найти среднее значение и стандартное отклонение данного распределения.

Вариант 20

1. Для заданной дискретной случайной величины X:

- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- г) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

В группе из 24 человек 5 отличников, 15 хорошистов. Группу разделили пополам. X – число студентов без «3» в первой подгруппе.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} x^2 + a, & x \in (0;2); \\ 0, & \text{иначе} \end{cases}$$
 a - ?

3. В нормально распределенной совокупности 25% значений X меньше 0 и 40% значений X больше 2. Найти среднее значение и стандартное отклонение данного распределения.

Вариант 21

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется n заготовок для одной и той же детали. Вероятность изготовления годной детали из каждой заготовки равна p. X — случайное число используемых заготовок.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} cx^3, & x \in (0;1); \\ 0, & \text{иначе} \end{cases}$$
 c - ?

3. Химический завод изготовляет серную кислоту номинальной плотности 1.84 г/см.кв. Практически 99.9% всех выпускаемых реактивов имеют плотность в интервале (1.82; 1.86). Найти вероятность того, что кислота удовлетворяет стандарту, если для этого достаточно, чтобы ее плотность не отклонялась от номинала более, чем на 0.01 г/см.кв. Предполагается, что плотность кислоты имеет нормальное распределение.

Вариант 22

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- г) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

В партии из 10 деталей содержится 3 нестандартных. Наудачу отобраны 2 детали. X – число нестандартных деталей среди 2 отобранных.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- г) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 0, & x \le 2; \\ 0.5x - b, & 2 < x \le 4; & b - ? \\ 1, & x > 4 \end{cases}$$

3. Коробки с шоколадом упаковываются автоматически. Их средняя масса равна 1.06 кг. Известно, что 5% коробок имеют массу, меньшую 1 кг. Каков % коробок, масса которых превышает 940 г, если вес коробок – случайная величина, распределенная по нормальному закону?

Вариант 23

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- г) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Имеется 10 перфокарт. 3 из них содержат ошибки. Берут перфокарты одну за другой, пока встретится перфокарта с ошибкой. X – число взятых перфокарт.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$F(x) = \begin{cases} 1 - A^{-x/t} & (t > 0), \ x \ge 0; \\ 0, \ x < 0 \end{cases}$$
 A - ?

3. Случайная величина X имеет нормальное распределение N(1,1). Что больше: вероятность попадания X в интервал (-1,0) или в интервал (0,0.5)?

Вариант 24

- 1. Для заданной дискретной случайной величины X:
- а) построить ряд распределения;
- б) построить многоугольник распределения;
- в) записать и построить функцию распределения F(x);
- Γ) найти характеристики: математическое ожидание (m); дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график многоугольника нанести m и интервалы, указанные в д).

Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0.9. В каждой партии содержится 5 изделий. X – число партий, в каждой из которых окажется ровно 4 стандартных изделия, если проверке подлежат 50 партий.

- 2. Для заданной непрерывной случайной величины X:
- а) записать и построить функцию плотности f(x);
- б) записать и построить функцию распределения F(x);
- в) проверить выполнение свойств f(x) и F(x);
- Γ) найти характеристики: математическое ожидание (m), дисперсию(D), среднее квадратичное отклонение (δ), моду, медиану, коэффициент ассиметрии, эксцесс;
 - д) найти $p(|X-m|<\delta)$ и $p(|X-m|<3\delta)$.

На график f(x) нанести m и интервалы, указанные в д).

$$f(x) = \begin{cases} x^2 + ax, & x \in (0;1); \\ 0, & \text{иначе} \end{cases}$$
 a - ?

4. Случайная величина X имеет нормальное распределение с математическим ожиданием M=0. Вероятность попадания X в интервал (0, 2) равна 0.4. Чему равна вероятность попадания X в интервал (0, 1)?

- 1. 12 студентов случайным образом рассаживаются на 12 первых местах одного ряда партера. Какова вероятность, что студенты М и Н будут сидеть рядом?
- 2. Батарея, состоящая из 10 орудий, ведет огонь по 15 кораблям неприятеля. Найти вероятность того, что все орудия стреляют:
 - а) по одной цели;
 - б) по разным целям (выбор цели случаен и не зависит от других).
- 3. В ящике находятся 20 лампочек, среди которых 3 перегоревшие. Найти вероятность того, что 10 лампочек, взятых наудачу из ящика, будут гореть.
- 4. На АТС могут поступать вызовы трех типов. Вероятности поступления вызовов 1-го, 2-го и 3-го типа соответственно равны 0,2; 0,3; 0,5. Поступило три вызова. Какова вероятность того, что:
 - а) все они разных типов;
 - б) среди них нет вызова 2-го типа?
- 5. На елочный базар поступают елки с трех лесхозов, причем 1-й лесхоз поставил 50% елок, 2-й 30%, 3-й 20%. Среди елок 1-го лесхоза 10% голубых, 2-го 20%, 3-го 30%. Куплена одна елка. Она оказалась голубой. Какова вероятность, что она поставлена 2-м лесхозом?
- 6. Вероятность того, что изделие не выдержит испытания, равна 0,004. Какова вероятность того, что из 750 проверяемых изделий более трех не выдержат испытания? Вариант 2
- 1. 9 туристов наудачу рассаживаются по 12 вагонам электрички. Найти вероятность того, что все они окажутся:
 - а) в одном вагоне;
 - б) во втором вагоне;
 - в) в разных вагонах.
- 2. В автопарке 20 экскурсионных автобусов двух марок: 12 и 8 соответственно. Вероятность выезда на экскурсию автобусов каждой марки одна и та же. Какова вероятность, что после выезда на экскурсию 16 автобусов, в автопарке остались автобусы:
 - а) первой марки;
 - б) одной марки;
 - в) разных марок.
- 3. С вероятностью 0,4 посланное сообщение принимается при передаче. Сколько надо сделать передач, чтобы с вероятностью не менее 0,9 она была принята хотя бы один раз?
- 4. В одной коробке находится 4 красных, 5 зеленых и 3 черных карандаша, а в другой 3 красных и 2 черных. Из первой коробки взяты три карандаша, а из второй два. Какова вероятность, что все вытащенные карандаши одного цвета?
- 5. Из 1000 ламп 590 принадлежат 1-й партии, 200 2-й, остальные 3-й партии. В 1-й партии 6%, во 2-й 5%, в 3-й 4% бракованных ламп. Наудачу выбирается одна лампа. Какова вероятность того, что она бракованная?
- 6. Проведено 8 независимых испытаний, каждое из которых заключается в одновременном подбрасывании двух монет. Найти вероятность, что:
 - а) в трех испытаниях из восьми появится по 2 герба;
 - б) не менее двух раз выпадет 2 герба.

- 1. В семизначном телефонном номере стерлись три последние цифры. Найти вероятность того, что стерлись:
 - а) одинаковые цифры;
 - б) разные цифры.
- 2. На устройство поступают два сигнала, причем поступление каждого сигнала, в течение часа, равновозможно. Устройство срабатывает, если разность между моментами поступления сигналов меньше 10 минут. Найти вероятность того, что устройство сработает.
- 3. В урне находится 40 шаров. Вероятность того, что 2 извлеченных шара окажутся белыми, равна 7/60. Сколько в урне белых шаров?
- 4. Вероятность потери письма в почтовом отделении равна 0,03, а телеграммы 0,01. Отправлено два письма и одна телеграмма. Какова вероятность того, что дойдет:
 - а) только телеграмма;
 - б) хотя бы одно из отправлений?
- 5. В пункте проката имеется 8 новых и 10 подержанных (т.е. хотя бы раз использованных) автомобилей. 3 машины взяли наудачу в прокат и спустя некоторое время вернули. После этого вновь наудачу взяли в прокат два автомобиля. Какова вероятность того, что оба автомобиля новые?
- 6. Вероятность попадания в цель при каждом выстреле равна 0,8. Найти вероятность того, что при 5 выстрелах цель будет поражена:
 - a) 2 pasa;
 - б) не менее 2 раз;
 - в) не будет поражена ни разу.

- 1. Два приятеля В и С решили, что за билетами в кино пойдет тот, у кого выпадет меньшее число очков при бросании игральной кости. Какова вероятность того, что за билетами пойдет:
 - a) C;
 - б) проигравший;
 - в) выигравший?
- 2. В ящике 50 годных и 16 дефектных деталей. Сборщик наудачу достает 8 деталей. Найти вероятность того, что среди них:
 - а) нет дефектных;
 - б) 3 дефектных.
- 3. Вероятность того, что в результате 5 независимых опытов событие А (предполагается, что она одна и та же во всех опытах) произойдет хотя бы один раз, равна 0,99757. Определить вероятность появления события при одном опыте.
- 4. В мастерской три станка. Они требуют наладки в течение смены с вероятностями 0.05; 0.1; 0.3 соответственно. Какова вероятность того, что в течение смены потребуется наладить:
 - а) все станки;
 - б) только один станок.
- 5. В первой урне 3 белых и 7 черных шаров, во второй 5 белых и 2 черных. Из первой урны переложили во вторую три шара, затем из второй урны был извлечен один шар. Какова вероятность того, что он белый?

6. По каналу связи передаются 7 сообщений, каждое из которых, независимо от других, может быть искажено с вероятностью 0,15. Найти вероятность того, что будет правильно принято не менее двух сообщений.

Вариант 5

- 1. В ящике лежат 9 кубиков с номерами от 1 до 9. Последовательно извлекаются три кубика. Найти вероятность того, что появятся кубики:
 - а) с номерами 2,5,9;
 - б) с номерами 5,2,9;
 - в) с номерами 4,5,4.
 - 2. 52 игральные карты раздаются 4 игрокам. Найти вероятность того, что:
 - а) все тузы будут у одного игрока;
 - б) каждый игрок получил один туз.
- 3. Три игрока делают по одному выстрелу в цель. Вероятности попаданий в цель соответственно равны 0,6; 0,85; 0,7. Какова вероятность попадания в цель:
 - а) только второго стрелка;
 - б) хотя бы одного стрелка?
- 4. В мешке смешаны нити, среди которых 30% красных, 60% синих, а остальные белые. Какова вероятность того, что три вынутые наудачу нити будут одного цвета?
- 5. На склад с оружием совершают налет 4 самолета. Вероятность поражения самолета системой ПВО равна 0,8. При прорыве k самолетов атакуемый объект будет уничтожен с вероятностью pk. Найти вероятность уничтожения слада.
- 6. Найти вероятность того, что в серии из 9 подбрасываний игральной кости 5 очков выпадет менее трех раз.

Вариант 6

- 1. В круг вписан квадрат. Найти вероятность того, что случайная точка, брошенная в круг, не попадет в квадрат.
- 2. В цветочном ларьке продаются 8 аспарагусов и 5 герани. Какова вероятность того, что среди 5проданных растений:
 - а) 2 аспарагуса;
 - б) все герани?
- 3. В ящике 6 белых и 30 черных шаров. Какова вероятность того, что из двух вынутых шаров один белый, а другой черный?
- 4. Вероятность дозвониться с первой попытки в Справочное бюро вокзала равна 0,4. Какова вероятность того, что:
 - а) удастся дозвониться при втором звонке;
 - б) придется звонить не более трех раз?
- 5. Батарея из трех орудий произвела залп, причем два снаряда попали в цель. Найти вероятность того, что третье орудие пропало, если вероятности попадания в цель 1-м, 2-м и 3-м орудиями соответственно равны 0,5; 0,3; 0.4.
- 6. Сообщение содержит 500 символов. Вероятность искажения символа при передаче постоянна и равна р. Если хотя бы один символ искажен, то сообщение будет принято неверно. При каких значениях р вероятность того, что сообщение будет успешно передано, окажется равной 0,95?

Контролируемые компетенции: ОПК-1, ОПК-3

Оценка компетенций осуществляется в соответствии с таблицей 4.