МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение инклюзивного высшего образования «Московский государственный гуманитарно-экономический университет» (ФГБОУ ИВО «МГГЭУ»)

УТВЕРЖДАЮ

Проректор по учебно-методической работе

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

<u>Б1.О.19 Дискретная математика</u> наименование дисциплины

44.03.01 «Педагогическое образование» шифр и наименование направления подготовки

<u>Информатика</u> направленность (профиль)

122	
	:: 4
b	
	Разработчик: <u>МГГЭУ, старший преподаватель кафедры информационных технологий и кибербезопасности</u> <u>место работы, занимаемая должность</u> <u>Труб Н.В. «31» 03 2023 г.</u>
	подпись Ф.И.О. Дата
	Фонд оценочных средств рассмотрен и одобрен на заседании кафедры Информационных технологий и кибербезопасности (протокол № 9 от «03» 04 2023 г. на заседании Учебно-методического совета МГГЭУ
	(протокол № <u>3</u> от « <u>26</u> » <u>04</u> <u>2023 г.) Согласовано: Представитель работодателя или объединения работодателей Роше Рамин АВФ.И.О/ АО, УЧНИК, Сипо, Імерси пакамення (должность, место работы) ио-зни «<u>03</u>» <u>04</u> <u>2023</u>г.</u>
,	Начальник учебно-методического управления И.Г. Дмитриева « <u>26</u> » 042023 г.
	Начальник методического отдела Д.Е. Гапеенок « 16 » 04 2023 г.
	Декан факультета ЦТиК А.Н. Руднев « <u>26</u> » 2023 г.

.

Содержание

1.	Паспорт фонда оценочных средств
	Перечень оценочных средств
3.	Описание показателей и критериев оценивания
	компетенций
4.	Методические материалы, определяющие процедуры оценивания
	результатов обучения, характеризующих этапы формирования
	компетенций
5.	Материалы для проведения текущего контроля и промежуточной
	аттестации
	•••

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Дискретная математика »

Оценочные средства составляются в соответствии с рабочей программой дисциплины и представляют собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.), предназначенных для измерения уровня достижения обучающимися установленных результатов обучения.

Оценочные средства используются при проведении текущего контроля успеваемости и промежуточной аттестации.

Таблица 1 - Перечень компетенций, формируемых в процессе освоения дисциплины

дисципли	ны
Код компете	Наименование результата обучения
	паименование результата обучения
НЦИИ	C
Ук 1	Способен осуществлять поиск, критический анализ и синтез
	информации, применять системный подход для решения
	поставленных задач
	NIC 1 1 D
	УК-1.1. Знает: методы критического анализа и оценки
	современных научных достижений; основные принципы
	критического анализа.
	УК-1.2. Умеет: получать новые знания на основе анализа,
	синтеза и других методов; собирать данные по сложным
	научным проблемам, относящимся к профессиональной
	области; осуществлять поиск информации и решений на
	основе экспериментальных действий.
	УК-1.3. Владеет: исследованием проблем
	профессиональной деятельности с применением анализа,
	синтеза и других методов интеллектуальной деятельности;
	выявлением научных проблем и использованием
	адекватных методов для их решения; демонстрированием
	оценочных суждений в решении проблемных
	профессиональных ситуаций.
Опк 8	Способен осуществлять педагогическую деятельность на основе

специальных научных знаний

ОПК-8.1. Знает: историю, теорию, закономерности и принципы построения и функционирования образовательного процесса, роль и место образования в жизни человека и общества в области гуманитарных знаний; историю, теорию, закономерности и принципы построения и функционирования образовательного процесса, роль и место образования в жизни человека и общества в области естественно- научных знаний; историю, теорию, закономерности и принципы построения и функционирования образовательного процесса, роль и место И жизни человека обшества области образования нравственного воспитания.

ОПК-8.2. Умеет: использовать современные, в том числе интерактивные, формы и методы воспитательной работы в урочной и внеурочной деятельности, дополнительном образовании детей.

ОПК-8.3. Владеет: методами, формами и средствами обучения, в том числе выходящими за рамки учебных занятий, для проектной деятельности обучающихся, осуществления лабораторных экскурсионной проведения экспериментов, работы, полевой практики и т.п.; действиями организации различных видов внеурочной деятельности: игровой, учебноисследовательской, художественно-продуктивной, культурнодосуговой с учетом возможностей образовательной организации, места жительства и историко-культурного своеобразия региона.

Конечными результатами освоения дисциплины являются сформированные

когнитивные дескрипторы «знать», «уметь», «владеть», расписанные по отдельным

компетенциям. Формирование дескрипторов происходит в течение всего семестра

по этапам в рамках контактной работы, включающей различные виды занятий и

самостоятельной работы, с применением различных форм и методов обучения.

2. ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ1

Таблица 2

№		Характеристика оценочного средства	Представление оценочного средства в ФОС
	оценочного		
	средства		
1	Устный опрос	Средство контроля усвоения учебного материала	Вопросы по темам/разделам дисциплины
		темы, раздела или разделов дисциплины,	
		организованное как учебное занятие в виде	
		собеседования преподавателя с обучающимися.	
2	Тест	Средство, позволяющее оценить уровень знаний	Тестовые задания
		обучающегося путем выбора им одного из	
		нескольких вариантов ответов на поставленный	
		вопрос. Возможно использование тестовых	
		вопросов, предусматривающих ввод	
		обучающимся короткого и однозначного ответа	
		на поставленный вопрос.	
3	Контрольная	Средство проверки умений применять	Комплект контрольных заданий по вариантам
	работа	полученные знания для решения задач	
		определенного типа по теме или разделу	

_

¹ Указываются оценочные средства, применяемые в ходе реализации рабочей программы данной дисциплины.

4	зачет	Вопросы к зачету

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Оценивание результатов обучения по дисциплине дискретная математика осуществляется в соответствии с Положением о текущем контроле успеваемости и промежуточной аттестации обучающихся.

Предусмотрены следующие виды контроля: текущий контроль (осуществление контроля всех видов аудиторной и внеаудиторной деятельности обучающегося с целью получения первичной информации о ходе усвоения отдельных элементов содержания дисциплины) и промежуточная аттестация (оценивается уровень и качество подготовки по дисциплине в целом).

Показатели и критерии оценивания компетенций, формируемых в процессе освоения данной дисциплины, описаны в табл. 3.

Таблица 3.

Код	Уровень освоения	Индикаторы	Критерии оценивания результатов обучения
компетенции	компетенции	достижения	
		компетенции	
		Знает	
УК-1	Недостаточный	УК-1.1.	Не знает значительной части материала курса, не способен
	уровень Оценка		самостоятельно выделять главные положения в изученном
	«незачтено»,		материале дисциплины
	«неудовлетворительно		
	>>		
	Базовый уровень	УК-1.1	Знает не менее 50 % основного материала курса, однако
	Оценка, «зачтено»,		испытывает затруднения в его применении
	«удовлетворительно»		
	Средний уровень	УК-1.1	Знает основную часть материала курса, способен применить
	Оценка «зачтено»,		изученный материал на практике, испытывает незначительные
	«хорошо»		затруднения в решении задач

Высокий уровень	УК-1.1	Показывает глубокое знание и понимание материала, способен
Оценка «зачтено», «отлично»		применить изученный материал на практике
	Умеет	
Базовый уровень	VK-1.2	Умеет воспроизвести не менее 50 % основного материала курса, однако испытывает затруднения при решении практических задач
Средний уровень	VK-1.2	Умеет решать стандартные профессиональные задачи с применением полученных знаний, испытывает незначительные затруднения в решении задач
Высокий уровень	VK-1.2	Умеет решать стандартные профессиональные задачи с применением полученных знаний, показывает глубокое знание и понимание материала, способен решить задачу при изменении формулировки
	Владеет	
Базовый уровень	УК-1.3	Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности, усвоил основное содержание материала дисциплины, но имеет пробелы в усвоении материала. Имеет несистематизированные знания основных разделов дисциплины.
Средний уровень	УК-1.3	Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности, способен самостоятельно выделять главные положения в изученном материале. Испытывает незначительные затруднения в решении задач.

	Высокий уровень	УК-1.3	Свободно владеет навыками теоретического и экспериментального исследования, показывает глубокое знание и
			понимание изученного материала
		Знает	
ОПК-8	Недостаточный уровень Оценка «незачтено», «неудовлетворительно»	ОПК-8.1	Не знает значительной части материала курса, не способен самостоятельно выделять главные положения в изученном материале дисциплины
	Базовый уровень Оценка, «зачтено», «удовлетворительно»	ОПК-8.1	Знает не менее 50 % основного материала курса, однако испытывает затруднения в его применении
	Средний уровень Оценка «зачтено», «хорошо»	ОПК-8.1	Знает основную часть материала курса, способен применить изученный материал на практике, испытывает незначительные затруднения в решении задач
	Высокий уровень Оценка «зачтено», «отлично»	ОПК-8.1	Показывает глубокое знание и понимание материала, способен применить изученный материал на практике
		Умеет	
	Базовый уровень	ОПК-8.2	Умеет воспроизвести не менее 50 % основного материала курса, однако испытывает затруднения при решении практических задач
	Средний уровень	ОПК-8.2	Умеет решать стандартные профессиональные задачи с применением полученных знаний, испытывает незначительные затруднения в решении задач

Высокий уровень	ОПК-8.2	Умеет решать стандартные профессиональные задачи с применением полученных знаний, показывает глубокое знание и понимание материала, способен решить задачу при изменении формулировки
	Владеет	
Базовый уровень	ОПК-8.3	Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности, усвоил основное содержание материала дисциплины, но имеет пробелы в усвоении материала. Имеет несистематизированные знания основных разделов дисциплины.
Средний уровень	ОПК-8.3	Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности, способен самостоятельно выделять главные положения в изученном материале. Испытывает незначительные затруднения в решении задач.
Высокий уровень	ОПК-8.3	Свободно владеет навыками теоретического и экспериментального исследования, показывает глубокое знание и понимание изученного материала

4. Методические материалы, определяющие процедуры оценивания результатов обучения

Устный опрос
Тест
Контрольная работа
зачет
5. Материалы для проведения текущего контроля и промежуточной аттестации
апсстации
Задания в форме устного опроса Раздел 1. Основы теории множеств.

Что называется множеством, элементами множества?

1)

- 2) Какие операции над множествами вы знаете?
- 3) Что такое декартово произведение множеств?
- 4) Сформулируйте основные свойства декартова произведения двух множеств.
- 5) Что называется бинарным отношением на множестве?
- 6) Операции над бинарными отношениями и их свойства.
- 7) Определите булеву матрицу бинарного отношения на конечном множестве.
- 8) Как определяется отображение? Виды отображений и их свойства.
- 9) Дайте понятие группы, кольца и поля.
- 10) Что такое порядок и эквивалентность на множестве?

Раздел 2. Элементы математической логики.

- 1) Дайте определение высказывания.
- 2) Перечислите основные символы алгебры высказываний.
- 3) Перечислите основные функции алгебры логики.
- 4) Что является основной задачей алгебры логики?
- 5) Что такое таблицы истинности логических функций?
- 6) Составьте таблицу истинности функций дизъюнкции и конъюнкции.
- 7) Составьте таблицу истинности функций импликации и эквивалентности.
- 8) Составьте таблицу истинности функций отрицания и сложения по модулю 2. 9) Составьте таблицу истинности функций Штрих Шеффера и Стрелка Пирса.
- 10) Формулы алгебры логики. Приоритет логических операций. Какие отношения имеют место на множестве логических операций?
 - 11) Что такое синтаксическая структура формулы?
 - 12) На какие классы делятся формулы алгебры логики?
- 13) Дайте определение логической функции многих переменных.
- 14) Что такое вектор значений булевой функции? Приведите пример построения таблицы истинности логической функции многих переменных.
 - 15) Сколько существует булевых функций от п переменных?
 - 16) Что такое ДНФ и КНФ?

- 17) Каков алгоритм построения СДНФ? Приведите пример построения СДНФ. 18) Каков алгоритм построения СКНФ? Приведите пример построения СКНФ.
- 19) Составьте СКНФ и СДНФ для функции.
- 20) Приведите пример построения СДНФ.

Раздел 2. Элементы математической логики.

- 1) Дайте определение полной системе булевых функций.
- 2) Перечислите классы Поста.
- 3) Дайте определение двойственной функции. Приведите примеры.
- 4) Дайте определение самодвойственной функции. Приведите примеры.
- 5) Постройте полином Жегалкина для функции «стрелка Пирса».
- 6) Сформулируйте теорему Поста.
- 7) Что такое базис? Приведите примеры базисов.
- 8) Перечислите основные методы минимизации функций.
- 9) Расскажите о методе склейки. 10) Расскажите о методе карт Карно.

Раздел 3. Основы теории графов.

- 1) Дайте определение графа.
- 2) Сформулируйте способы задания графа.
- 3) Что такое маршруты, цепи, циклы, связность?
- 4) Какие операции над графами вы знаете?
- 5) Что такое Эйлеров граф? Критерий эйлеровости.
- 6) Что такое остовное дерево? Сформулируйте алгоритм Краскала для построения остовного дерева минимального веса.
 - 7) Что такое Гамильтонов граф?
 - 8) Сформулируйте достаточные условия гамильтоновости.
 - 9) Дайте определение планарного графа.
 - 10) Сформулируйте критерий планарности графа.

Раздел 4. Конечные автоматы.

- 1) Что такое логический конечный автомат?
- 2) Представьте в виде рисунка логический конечный автомат.
- 3) Перечислите способы задания конечного автомата. 4) Что такое такт конечного логического автомата?
- 5) Приведите пример конечного автомата без памяти.

- 6) Приведите пример конечного автомата с памятью.
- 7) Приведите пример конечного автомата с обратной связью по выходу.
- 8) Приведите пример конечного автомата по схеме сравнения на равенство.
- 9) Дайте определение канонических уравнений автомата.
- 10) Опишите алгоритм получения канонических уравнений автомата.

Комплект контрольных заданий

Тема 1. Основы

теории множеств.

Вариант 1.

- 1. Дать определение операции пересечения множеств.
- 2. Дать определение операции произведения двух бинарных отношений.
- 3. Закон дистрибутивности пересечения относительно объединения множеств.
 - 4. Дать определение функции.
 - 5. Дать понятие разбиения множества.
- 6. Доказать равенство множеств по определению: A \ (BUC) = (A \ B) \cap (A \

C).

- 7. Определить свойства бинарного отношения ρ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность). Будет ли ρ отношением эквивалентности или порядка? $\rho = \{\langle x, y \rangle | x, y \in \mathbb{R}, x^2 = y^2 \}$.
 - 8. Является ли функция $f(x)=x^2$ инъективной?

Вариант 2.

- 1. Дать определение операции объединения множеств.
- 2. Дать определение рефлексивного бинарного отношения.
- 3. Закон дистрибутивности объединения относительно пересечения множеств.
- 4. Понятие бинарной алгебраической операции и три ее свойства.
 - 5. Свойство подмножества счетного множества.

- 6. Доказать равенство множеств по определению: $A \setminus (A \setminus B)$ = $A \cap B$
- 7. Определить свойства бинарного отношения ρ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность). Будет ли ρ отношением эквивалентности или порядка? $\rho = \{\langle x, y \rangle | x, y \in \mathbb{N}, x$ делится на $y \}$.
- 8. Является ли следующие отношения функциями: $\{(1,2); (2,3); (3,2)\}; \{(1,2); (1,3); (2,3)\}; \{(x, x^2-2x-3) \mid x \in \mathbb{R}\}?$

Вариант 3.

- 1. Дать определение операции разности множеств.
- 2. Дать определение иррефлексивного бинарного отношения.
- 3. Закон коммутативности пересечения множеств.
- 4. Дать определение кольца.
- 5. Основные операции над множествами.
- 6. Доказать равенство множеств по определению: $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$
- 7. Определить свойства бинарного отношения ρ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность). Будет ли ρ отношением эквивалентности или порядка? $\rho = \{\langle x, y \rangle | x, y \in \mathbb{N}, x y \text{ делится на } 2\}$.
- 8. Является ли отображение сюръективным $f:x \to x^2$, $X = \{x \mid -3 \le x \le 5\}$, $Y = \{x \mid 0 \le x \le 25\}$?

Вариант 4.

- 1. Дать определение операции дополнения до множества.
- 2. Дать определение симметричного бинарного отношения.
- 3. Закон коммутативности объединения множеств.
- 4. Дать понятие булевой матрицы данного бинарного отношения.
- 5. Мощность объединения конечного или счетного числа счетных множеств.
- 6. Доказать равенство множеств по определению: $(A \cap B) \cup (C \cap D) = (A \cup C) \cap (B \cup C) \cap (A \cup D) \cap (B \cup D)$.
- 7. Определить свойства бинарного отношения ρ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность). Будет ли ρ отношением эквивалентности или порядка? $\rho = \{\langle x, y \rangle | x, y \in \mathbb{Z}, (x y) \text{четное}\}.$

8. Является ли отображение сюръективным, где X — множество кругов, Y — множество положительных действительных чисел, каждому кругу сопоставляется его площадь?

Вариант 5.

- 1. Дать определение операции декартового произведения множеств.
- 2. Дать определение антисимметричного бинарного отношения.
 - 3. Закон ассоциативности пересечения множеств.
 - 4. Дать понятие области значений бинарного отношения.
 - 5. Дать определение симметричного элемента. Его свойство.
- 6. Доказать равенство множеств по определению: $(A \setminus B) \cap C = (A \cap C) \setminus B$.
- 7. Определить свойства бинарного отношения ρ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность). Будет ли ρ отношением эквивалентности или порядка? $\rho = \{\langle x, y \rangle | x, y \in \mathbb{N}, x y = 2 \}$.
- 8. Является ли отношение $\{(1,a); (1,b); (2,a)\}$, определенное на декартовом произведении множеств $A=\{1,2\}$ и $B=\{a,b\}$, функцией?

Вариант 8.

- 1. Дать определение операции пересечения двух бинарных отношений.
 - 2. Дать определение инъективного отображения.
 - 3. Дать определение множества мощности континуум.
 - 4. Свойства произведений двух отображений.
 - 5. Дать определение группы.
- 6. Доказать равенство множеств по определению: $(A \cap B) \cup (A \cap B) = (A \cup B) \cap (A \cup B)$.
- 7. Определить свойства бинарного отношения ρ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность). Будет ли ρ отношением эквивалентности или порядка? $\rho = \{\langle x, y \rangle | x, y \in \mathbb{Z}, (x y) \text{нечетное}\}.$

Вариант 9.

- 1. Дать определение операции дополнения до бинарного отношения.
 - 2. Дать определение сюръективного отображения.

- 3. Дать определение отношения эквивалентности.
- 4. Закон идемпотентности пересечения.
- 5. Дать определение поля.
- 6. Доказать равенство множеств по определению: $B \cup (A \setminus B) = A \cup B$
- 7. Определить свойства бинарного отношения ρ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность). Будет ли ρ отношением эквивалентности или порядка? $\rho = \{\langle x, y \rangle | x, y \in \mathbb{N}, x^2 = y \}$.

Вариант 10.

- 1. Дать определение операции разности двух бинарных отношений.
 - 2. Дать определение биективного отображения.
 - 3. Дать определение отношения порядка.
- 4. Связь отношения эквивалентности на множестве с разбиением множества.
 - 5. Дать определение моноида.
- 6. Доказать равенство множеств по определению: $A \setminus B = A \setminus (A \cap B)$.
- 7. Определить свойства бинарного отношения ρ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность). Будет ли ρ отношением эквивалентности или порядка? $\rho = \{\langle x, y \rangle | x, y \in \mathbb{R}, x + y \leq 0\}$.

Вариант 11.

- 1. Дать определение мощностного множества.
- 2. Закон идемпотентности объединения.
- 3. Дать определение полугруппы.
- 4. Связь булевой матрицы объединения бинарных отношений с булевыми матрицами этих отношений.
- 5. Мощность объединения конечного (счетного, континуального) числа множеств мощности континуум.
- 6. Доказать равенство множеств по определению: $A \cap (B \setminus C) = (A \cap B) \setminus C$
- 7. Определить свойства бинарного отношения ρ (рефлексивность, иррефлексивность, симметричность,

антисимметричность, транзитивность). Будет ли ρ отношением эквивалентности или порядка? $\rho = \{\langle x, y \rangle | x, y \in \mathbb{R}, 2x \geq {}^{1}y \}$.

Тема 2. Элементы математической логики. Совершенные ДНФ и КНФ. Алгебра Жегалкина.

Вариант № 1.

- 1. Доказать равносильность формул
- $\Box A \Box \Box B \Box C \Box \Box \Box \Box \Box A \Box C \Box \Box \Box B \Box C \Box \Box.$
- 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

$\Box \Box A \Box C \Box \Box \Box \Box B \Box C \Box \Box \Box \Box A \Box B \Box \Box C \Box \Box \Box.$

Определить будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

 $f_2(x_1, x_2) \square x_1 \square x_2$
 $f_3(x_1, x_2) \square 1$

Вариант № 2.

- 1. Доказать равносильность формул $\Box A \Box \Box A \Box C \Box \Box \Box B \Box C \Box \Box \Box \Box \Box A \Box B \Box \Box \Box A \Box C \Box \Box$.
- 2. Привести:
 - а) к ДНФ и КНФ,
- б) к СДНФ и СКНФ □□Д□□В□С□□□□Д~С□□.
- 3. Дана функция (формула) $\square \square A \square C \square \square \square B \square A \square \square$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$
$$f_2(x_1) \square x_1$$

Вариант № 3.

- 1. Доказать равносильность формул $\Box A\Box B\Box \Box \Box B\Box C\Box \Box \Box C\Box A\Box \Box \Box \Box \Box A\Box B\Box \Box \Box B\Box C\Box \Box \Box C\Box A\Box \Box.$
 - 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\Box\Box A\Box\Box B\Box C\Box\Box\Box\Box\Box\Box\Box A\Box C\Box\Box\Box\Box A\Box B\Box\Box\Box.$

- 3. Дана функция (формула) $\Box\Box\Box A \sim B\Box\Box\Box\Box A\Box B\Box\Box\Box\Box\Box C\Box A\Box\Box$. Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.
 - 4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

 $f_2(x_1) \square x_1$

Вариант № 4.

- 1. Доказать равносильность формул $\Box A \sim \Box B \sim C \Box \Box \Box \Box \Box \Box A \sim B \Box \sim C \Box$.
- 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

3. Дана функция (формула) $\Box\Box\Box A\Box\Box B\Box\Box\Box A\Box\Box\Box A\Box\Box\Box B\Box C\Box\Box\Box$.

для неё полином Жегалкина.

операции суперпозиции?

$$f_1(x_1,x_2) \square x_1 \square x_2$$

$$f_2(x_1) \square x_1$$

Вариант № 5.

- 1. Доказать равносильность формул $\Box B \Box C \Box \Box \Box A \Box B \Box \Box \Box A \Box C \Box \Box \Box \Box \Box \Box A \Box B \Box \Box A \Box$.
 - 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

3. Дана функция (формула) $\square A \square \square B \sim C \square \square \square \square B \square \square A \square C \square \square \square$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

$$f_2(x_1,x_2) \square 1$$

Вариант № 6.

- 1. Доказать равносильность формул
- $\square \square A \square B \square \square \square B \square C \square \sim \square A \square C \square \square \square \square \square A \square \square B \square A \square \square \square C \square.$
 - 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\square \square \square A \square C \square \square \square B \square C \square \square \square \square A \square B \square \square.$

3. Дана функция (формула) $\square \square A \square \square B \sim C \square \square \square \square B \square \square A \sim C \square \square \square$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции? $f_1(x_1, x_2) \square x_1 \square x_2 f_2(x_1, x_2) \square x_1 \sim x_2$ $f^1(x_1, x_2) \square 0$

Вариант № 7.

1. Доказать равносильность формул

 $\Box \Box A \Box \Box B \Box C \Box \Box \Box \Box \Box A \Box B \Box \Box C \Box \Box \Box \Box \Box A \Box \Box A \Box B \Box \Box \Box C \Box.$

- 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\square\square\square\overline{A} \sim B\square\square\square B \sim C\square\square\square\square A\square C\square\square.$

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$
$$f_2(x_1, x_2) \square 0$$

Вариант № 8.

1. Доказать равносильность формул

 $\Box\Box\Box A\Box B\Box\Box C\Box\Box\Box\Box A\Box\Box B\Box C\Box\Box\Box\Box\Box\Box\Box A\Box\Box A\Box\Box A\Box B\Box\Box\Box C\Box.$

- 2. Привести:
- а) к ДНФ и КНФ,
- б) к СДНФ и СКНФ

 $\Box\Box\Box A\Box B\Box\Box\Box B\Box C\Box\Box\Box\Box\Box\Box A\Box B\Box\Box\Box C\Box B\Box\Box\Box.$

3. Дана функция (формула) $\square \square \square A \sim B \square \square \square B \sim C \square \square \square \square A \square C \square \square$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?
$f_1(x_1, x_2) \square x_1 \square x_2$
$f_2(x_1,x_2) \square x_1 \square x_2$
$f^1(x_1,x_2) \square 1$
Вариант № 9.
 Доказать равносильность формул □А□□В□С□□□□□Δ□В□□□Δ□С□□. Привести:
а) к ДНФ и КНФ,
б) к СДНФ и СКНФ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3. $_{\text{Дана функция (формула)}}$ $\square \square \square A \square \square B \square C \square \square \square \square B \square A \square \square \square B \square$. Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.
4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?
$f_1(x_1, x_2) \square x_1 \square$
$x_2 f_2(x_1, x_2) \square x_1$
$\square x_2 f_3(x_1) \square x_1$
Вариант № 10.
1. Доказать равносильность формул
$\Box A \Box \Box B \Box C \Box \Box \Box \Box A \Box C \Box \Box \Box B \Box C \Box \Box$. 2. Привести:
а) к ДНФ и КНФ,
б) к СДНФ и СКНФ
$\overline{\square A \square \square B \square} C \square \square \square \square A \square B \square \square C \square \square.$
_
$^{-1}$. Дана функция (формула) $\square \square A \square B \square \square \square A \square B \square C \square \square \square$.

для неё полином Жегалкина.
операции суперпозиции?
$f_1(x_1, x_2) \square x_1 \sim x_2$
$f_2(x_1,x_2) \square x_1 \square x_2$
$f^1(x_1,x_2) \square 0$
Вариант № 11.
1. Доказать равносильность формул
$\square \square B \square C \square \square \square \square A \square B \square \square \square \square A \square C \square \square \square \square \square \square A \square B \square \square A \square.$
2. Привести:
а) к ДНФ и КНФ,
, , , , , , , , , , , , , , , , , , ,
б) к СДНФ и СКНФ
$\Box\Box\BoxA\Box B\Box\Box\Box\BoxC\BoxA\Box\Box\Box\BoxB\Box C\Box\Box$.

3. Дана функция (формула) $\Box\Box A\Box B\Box\Box\Box\Box A\Box C\Box \sim \Box B\Box C\Box\Box\Box$.

Определить, будет ли эта функция монотонной, самодвойственной и составить дл неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

 $f_2(x_1, x_2) \square x_1 \square x_2$

Вариант № 12.

- 1. Доказать равносильность формул $\square \square A \square \square B \square C \square \square \square \square \square A \square B \square \square C \square \square \square \square \square A \square B \square \square \square C \square.$
 - 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\Box A \Box \Box \Box B \Box C \Box \Box \Box A \Box B \Box \Box \Box$.

3. Дана функция (формула) $\Box\Box\Box A\Box B\Box\Box\Box B\Box C\Box\Box \sim \Box A\Box C\Box\Box$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

 $f_2(x_1, x_2) \square x_1 \sim x_2$
 $f_3(x_1, x_2) \square 0$

Вариант №

13. 1. Доказать равносильность формул

 $\Box A \Box \Box B \Box C \Box \Box \Box \Box \Box A \Box C \Box \Box \Box B \Box C \Box \Box.$

- 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\Box\Box A\Box C\Box\Box\Box\Box B\Box C\Box\Box\Box\Box A\Box B\Box\Box C\Box\Box\Box.$

Определить будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

 $f_2(x_1, x_2) \square x_1 \square x_2$
 $f_3(x_1, x_2) \square 1$

Вариант № 14.

- 1. Доказать равносильность формул $\Box A \Box \Box A \Box C \Box \Box \Box B \Box C \Box \Box \Box \Box \Box A \Box B \Box \Box \Box \Box A \Box C \Box \Box$.
- 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\Box A \Box B \Box C \Box \Box \Box A \sim C \Box \Box$.

3. Дана функция (формула) $\square \square A \square C \square \square \square B \square A \square \square$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1,x_2) \square x_1 \square x_2$$

 $f_2(x_1) \square x_1$

Вариант № 15.

- 1. Доказать равносильность формул $\Box A\Box B\Box \Box B\Box C\Box \Box \Box C\Box A\Box \Box \Box \Box \Box A\Box B\Box \Box \Box B\Box C\Box \Box \Box C\Box A\Box \Box.$
 - 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\Box\Box A\Box\Box B\Box C\Box\Box\Box\Box\Box\Box\Box A\Box C\Box\Box\Box A\Box B\Box\Box\Box.$

3. Дана функция (формула) $\Box\Box\Box A \sim B\Box\Box\Box\Box A\Box B\Box\Box\Box\Box\Box C\Box A\Box\Box$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1,x_2) \square x_1 \square x_2$$

$$f_2(x_1) \square x_1$$

Вариант №

- **16.** 1. Доказать равносильность формул $\Box A \sim \Box B \sim C \Box \Box \Box \Box \Box A \sim B \Box \sim C \Box$.
- 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

3. Дана функция (формула) $\Box\Box\Box A\Box B\Box\Box A\Box\Box\Box A\Box\Box\Box B\Box C\Box\Box\Box$. для неё полином Жегалкина.

операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

$$f_2(x_1) \square x_1$$

Вариант № 17.

- Доказать равносильность формул 1. $\Box \Box B \Box C \Box \Box \Box \Box A \Box B \Box \Box \Box A \Box C \Box \Box \Box \Box \Box \Box A \Box B \Box \Box A \Box.$

 - а) к ДНФ и КНФ,

2.

б) к СДНФ и СКНФ

 $\Box\Box\Box A\Box B\Box\Box\Box C\Box A\Box\Box\Box\Box B\Box C\Box\Box.$

Привести:

Дана функция (формула) $\Box\Box A\Box\Box B\sim C\Box\Box\Box\Box B\Box\Box A\Box C\Box\Box\Box$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

$$f_2(x_1, x_2) \Box 1$$

Вариант № 18.

Доказать равносильность формул 1.

 $\Box\Box A\Box B\Box\Box\Box B\Box C\Box \sim \Box A\Box C\Box\Box\Box \ \Box\Box A\Box \ \Box B\Box A\Box\Box\Box C\Box.$

- 2. Привести:
- а) к ДНФ и КНФ,
- б) к СДНФ и СКНФ

 $\Box\Box\Box A\Box C\Box\Box\Box B\Box C\Box\Box\Box\Box A\Box B\Box\Box.$

Дана функция (формула) $\Box\Box A\Box\Box B\sim C\Box\Box\Box\Box B\Box\Box A\sim C\Box\Box\Box$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции? $f_1(x_1, x_2) \square x_1 \square x_2 f_2(x_1, x_2)$ x_2) $\square x_1 \sim x_2$

$$f^1(x_1,x_2) \square 0$$

Вариант № 19.

- 1. Доказать равносильность формул
- $\square \square A \square \square B \square C \square \square \square \square \square A \square B \square \square C \square \square \square \square \square A \square B \square \square \square C \square.$
- 2. Привести:
 - а) к ДНФ и КНФ,
- б) к СДНФ и СКНФ $^-$ 000 $^-$ 8000 $^-$ 8 $^-$ 0000 $^-$ 000.

 $^{^1}$. Дана функция (формула) \Box

для неё полином Жегалкина.

4 . Можно ли из указанных фу	нкций получить	все булевы	функции с
помощью операции суперпозиции?			

$$f_1(x_1, x_2) \square x_1 \square x_2$$
$$f_2(x_1, x_2) \square 0$$

Вариант № 20.

- 1. Доказать равносильность формул
- $\Box\Box\Box A\Box B\Box\Box C\Box\Box\Box\Box A\Box\Box B\Box C\Box\Box\Box\Box\Box\Box\Box\Box A\Box\Box A\Box\Box B\Box\Box\Box C\Box.$
 - 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

$\Box\Box\Box A\Box B\Box\Box\Box B\Box C\Box\Box\Box\Box\Box\Box A\Box B\Box\Box\Box C\Box B\Box\Box\Box.$

3. Дана функция (формула) $\Box\Box\Box A \sim B\Box\Box\Box B \sim C\Box\Box\Box\Box A\Box C\Box\Box$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

 $f_2(x_1, x_2) \square x_1 \square x_2$
 $f^1(x_1, x_2) \square 1$

Вариант №

- **21.** 1. Доказать равносильность формул $\Box A \Box \Box B \Box C \Box \Box \Box \Box \Box A \Box B \Box \Box \Box A \Box C \Box \Box$.
 - 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $^{^1}$. Дана функция (формула) $\square \square A \square B \square \square \square A \square \square B \square C \square \square \square$.

$\Box \Box \Box A \Box B \Box \Box \Box A \Box C \Box \Box \Box \Box \Box A \Box A \Box \Box \Box B \Box C \Box \Box \Box.$

3. Дана функция (формула) $\square \square \square A \square \square B \square C \square \square \square \square B \square A \square \square \square B \square$.

Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square$$

$$x_2 f_2(x_1, x_2) \square x_1$$

$$\square x_2 f_3(x_1) \square x_1$$

Вариант № 22.

- 1. Доказать равносильность формул
- $\Box A \Box \Box B \Box C \Box \Box \Box \Box \Box A \Box C \Box \Box \Box B \Box C \Box \Box$.
- 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\Box\Box A\Box\Box B\Box C\Box\Box\Box\Box\Box\Box A\Box B\Box\Box C\Box\Box$.

для неё полином Жегалкина.

операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \sim x_2$$

$$f_2(x_1, x_2) \square x_1 \square x_2$$

$$f_3(x_1,x_2) \square 0$$

Вариант № 23.

- 1. Доказать равносильность формул $\Box B \Box C \Box \Box \Box A \Box B \Box \Box \Box A \Box C \Box \Box \Box \Box \Box A \Box B \Box \Box A \Box$.
 - 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\square \square \square A \square B \square \square \square C \square A \square \square \square \square B \square C \square \square.$

3. Дана функция (формула) $\square \square A \square B \square \square \square \square A \square C \square \sim \square B \square C \square \square \square$.

Определить, будет ли эта функция монотонной, самодвойственной и составить дл неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square x_2$$

 $f_2(x_1, x_2) \square x_1 \square x_2$

Вариант № 24.

- 1. Доказать равносильность формул $\Box \Box A \Box \Box B \Box C \Box \Box \Box \Box \Box A \Box B \Box \Box C \Box \Box \Box \Box A \Box B \Box \Box \Box C \Box.$
 - 2. Привести:
 - а) к ДНФ и КНФ,
 - б) к СДНФ и СКНФ

 $\Box A \Box \Box \Box B \Box C \Box \Box \Box A \Box B \Box \Box \Box$.

3. $_{\text{Дана функция (формула)}} \Box \Box \Box A \Box B \Box \Box \Box B \Box C \Box \Box \sim \Box A \Box C \Box \Box$. Определить, будет ли эта функция монотонной, самодвойственной и составить для неё полином Жегалкина.

4. Можно ли из указанных функций получить все булевы функции с помощью операции суперпозиции?

$$f_1(x_1, x_2) \square x_1 \square$$

 $x_2 f_2(x_1, x_2) \square x_1$
 $\sim x_2 f_3(x_1, x_2) \square$
 0

Контролируемые компетенции: ОПК-1, ОПК-6.

Оценка компетенций осуществляется в соответствии с таблицей 4.

Тема 1. Элементы математической логики. Полнота системы булевых функций. Минимизация булевых функций.

Вариант № 1.

- 1. Показать, что система $\Sigma = \{f\}$, где f(x,y,z) булева функция (1,0,1,0,0,0,1,0), функционально полна по теореме Поста. В случае функциональной полноты $\Sigma = \{f\}$ получить отрицание, константы 0 и 1, конъюнкцию и дизъюнкцию с помощью суперпозиции функции f.
- 2. Для булевой функции f(x,y,z,t)=(1,0,1,1,1,0,1,0,1,1,1,0,0,0,1,1) получить:
- а) Сокращенную д.н.ф. методом склейки, все тупиковые д.н.ф. и все минимальные д.н.ф.;
 - b) Все минимальные д.н.ф. с помощью карт Карно.

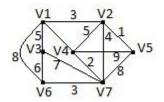
Вариант № 2.

- 1. Показать, что система $\Sigma = \{f\}$, где f(x,y,z) булева функция (1,1,0,0,0,1,0,0), функционально полна по теореме Поста. В случае функциональной полноты $\Sigma = \{f\}$ получить отрицание, константы 0 и 1, конъюнкцию и дизъюнкцию с помощью суперпозиции функции f.
- 2. Для булевой функции f(x,y,z,t)=(1,1,1,0,1,0,1,1,0,0,1,1,1,0,0,0) получить:
- а) Сокращенную д.н.ф. методом склейки, все тупиковые д.н.ф. и все минимальные д.н.ф.;
 - b) Все минимальные д.н.ф. с помощью карт Карно.

Вариант № 3.

- 1. Показать, что система $\Sigma = \{f\}$, где f(x,y,z) булева функция (1,0,0,1,0,0,1,0), функционально полна по теореме Поста. В случае функциональной полноты $\Sigma = \{f\}$ получить отрицание, константы 0 и 1, конъюнкцию и дизъюнкцию с помощью суперпозиции функции f.
- 2. Для булевой функции f(x,y,z,t)=(1,1,0,0,1,1,1,0,0,1,1,1,1,0,0,1) получить:
- а) Сокращенную д.н.ф. методом склейки, все тупиковые д.н.ф. и все минимальные д.н.ф.;
 - b) Все минимальные д.н.ф. с помощью карт Карно.

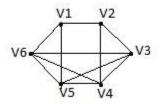
Вариант № 4.


- 1. Показать, что система $\Sigma = \{f\}$, где f(x,y,z) булева функция (1,0,0,1,0,1,0,0), функционально полна по теореме Поста. В случае функциональной полноты $\Sigma = \{f\}$ получить отрицание, константы 0 и 1, конъюнкцию и дизъюнкцию с помощью суперпозиции функции f.
- 2. Для булевой функции f(x,y,z,t)=(0,1,1,0,1,1,0,1,1,0,0,1,0,1,1,1) получить:
 - а) Сокращенную д.н.ф. методом склейки, все тупиковые д.н.ф. и все

минимальные д.н.ф.;

b) Все минимальные д.н.ф. с помощью карт Карно. Контролируемые компетенции: ОПК-1, ОПК-6. Оценка компетенций осуществляется в соответствии с таблицей 4.

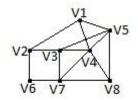
Тема 2. Основы теории графов.


Вариант 1.

Для данного взвешенного графа найти:

- 1) матрицу смежности и матрицу инцидентности;
- 2) остовное дерево минимального веса; 3) фундаментальную систему циклов;
 - 4) фундаментальную систему разрезов;
- 5) максимальное удаление для каждой вершины, радиус графа r(G), диаметр графа d(G), центры и диаметральные цепи.

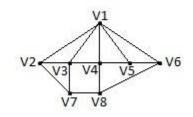
Вариант 2.


Для данного взвешенного графа найти:

- 1) матрицу смежности и матрицу инцидентности;
- 2) остовное дерево минимального веса, если вес каждого ребра задан формулой

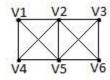
 $\mu(V_i, V_j) = \min(i, j);$

- 3) фундаментальную систему циклов;
- 4) фундаментальную систему разрезов;
- 5) максимальное удаление для каждой вершины, радиус графа r(G), диаметр графа d(G), центры и диаметральные цепи.


Вариант 3.

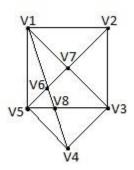
Для данного взвешенного графа найти:

- 1) матрицу смежности и матрицу инцидентности;
- 2) остовное дерево минимального веса, если вес каждого ребра задан формулой $\mu(V_i, V_j) = \min(i, j);$
 - 3) фундаментальную систему циклов;
 - 4) фундаментальную систему разрезов;
- 5) максимальное удаление для каждой вершины, радиус графа r(G), диаметр графа d(G), центры и диаметральные цепи.


Вариант 4.

Для данного взвешенного графа найти:

- 1) матрицу смежности и матрицу инцидентности;
- 2) остовное дерево минимального веса, если вес каждого ребра задан формулой $\mu(V_i,V_j)=i+j;$
 - 3) фундаментальную систему циклов;
 - 4) фундаментальную систему разрезов;
- 5) максимальное удаление для каждой вершины, радиус графа r(G), диаметр графа d(G), центры и диаметральные цепи.


Вариант 5.

Для данного взвешенного графа найти:

- 1) матрицу смежности и матрицу инцидентности;
- 2) остовное дерево минимального веса, если вес каждого ребра задан формулой $\mu(V_i,V_j)=i+j;$
 - 3) фундаментальную систему циклов;
 - 4) фундаментальную систему разрезов;
- 5) максимальное удаление для каждой вершины, радиус графа r(G), диаметр графа d(G), центры и диаметральные цепи.

Вариант 6.

Для данного взвешенного графа найти:

- 1) матрицу смежности и матрицу инцидентности;
- 2) остовное дерево минимального веса, если вес каждого ребра задан формулой $\mu(V_i,V_j)=\min{(i,j)};$
 - 3) фундаментальную систему циклов;
 - 4) фундаментальную систему разрезов;

5) максимальное удаление для каждой вершины, радиус графа r(G), диаметр графа d(G), центры и диаметральные цепи.

Контролируемые компетенции: ОПК-1, ОПК-6.

Оценка компетенций осуществляется в соответствии с таблицей 4.

Тестовые задания

Вариант 1.

1. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества

$$A=\{x|x<5\}, B=\{2,4,5,6\}, C=\{1,3,5,6\}.$$

Найти $A \square B$ (Указать правильные варианты ответов). а. $\{1,2,2,3,4,4,5,6\}$

- b. {1,2,3,4,5,6}
- c. $\{x \mid x < 7, x \square U\}$
- d. {1,3}
- e. $\{3,4,2,5,1,6\}$
- 2. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества

$$A=\{x|x<5\}, B=\{2,4,5,6\}, C=\{1,3,5,6\}.$$

Найти декартово (прямое) произведение $D\Box C$, где $D\Box A\Box B$ (Указать правильные варианты ответов).

```
a. \{1,3,5,6\}
```

b.
$$\{(1,1), (3,1), (1,3), (3,3), (1,5), (3,5), (1,6), (3,6)\}$$

c.
$$\{(1,1), (1,3), (3,3), (1,5), (3,5), (1,6), (3,6)\}$$

d.
$$\{(1,3), (1,5), (3,5), (1,6), (3,6)\}$$

e.
$$\{(3,3), (1,5), (3,5), (1,6), (3,6), (1,1), (3,1), (1,3)\}$$

3. Справедлив ли дистрибутивный закон?

$$A\Box BC\Box (A\Box B)(A\Box C)$$

- а. да
- **b.** нет
- 4. Сколькими способами можно выбрать 3 различных карандаша из имеющихся 5 карандашей разных цветов? (Ввести ответ в виде числа)
 - 5. Граф G задан следующей матрицей смежности:

 $\Box 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \Box$

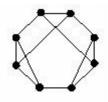
 $\Box 1\ 0\ 1\ 0\ 1\ 0\ 0\ \Box$

 $\Box 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \Box$

 $\Box 0\ 0\ 1\ 0\ 1\ 0\ 0\ 1^{\Box}$

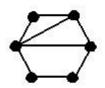
 $\Box 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \Box$

 $\Box 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \Box \Box \Box 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ \Box \Box$


$\Box 1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\Box$

Найти диаметр d(G) графа.

6. Выберите условия, каждое из которых является необходимым для того, чтобы связный граф с n вершинами был планарным (m – число ребер):


- a. $m\square 3n\square 6$
- b. $m\square 3n\square 6$
- c. m = 8 при n = 6
- d. m < 19 при n = 8
- e. $m\square 3n$

7. Является ли планарным следующий граф:

- а. да
- b. нет

8. Сколько граней у плоского графа:

- 9. Для функции f, заданной вектором $\Box_f\Box\Box 0111\Box$, определить, является ли она:
- а. линейной
- b. монотонной
- с. самодвойственной
- d. функцией из класса T_0
- e. функцией из класса T_1
- 10. Полна ли система функций $\{f, g, h\}$ (принадлежность функций классам T_0, T_1, L, M, S отображена в таблице).

Функции	T_{0}	$T_{_1}$	L	M	S
f	+	(=):	+	1	-
g		+	+	+	t=1
h	+	+	=	+	+

- а. да
- b. нет

Вариант 2.

1. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества

$$A = \{x \mid x < 4\}, B = \{2,4,5,7\}, C = \{1,2,5,6\}.$$

Найти $C\square A$ (Указать правильные варианты ответов).

- a. $\{1,1,2,2,3,5,6\}$
- b. {1,2,3,5,6}
- c. $\{x | x < 7\}$
- d. $\{3,2,6,1,5\}$
- e. {1,2}
- 2. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества

$$A=\{x|x<4\}, B=\{2,4,5,7\}, C=\{1,2,5,6\}.$$

Найти декартово (прямое) произведение $D\Box A$, где $D\Box C\Box B$ (Указать правильные варианты ответов).

- a. $\{1,2,3,6\}$
- b. $\{(1,1), (6,1), (1,2), (6,2), (1,3), (6,3)\}$
- c. $\{(1,1), (1,6), (1,2), (2,6), (1,3), (3,6)\}$
- d. {1}
- e. $\{(1,1), (1,2), (1,3), (6,1), (6,2), (6,3)\}$
- f. $\{(6,3), (1,1), (1,3), (6,1), (6,2), (1,2)\}$
- 3. Справедлив ли дистрибутивный закон?

 $A\square(B\square C)\square(A\square B)\square(A\square C)$

а. да

b. нет

- 4. Сколькими способами можно разделить 5 различных карандашей между двумя школьниками так, чтобы у каждого был хотя бы один карандаш? (Ввести ответ в виде числа)
 - 5. Граф G задан следующей матрицей смежности:

 $\Box 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ \Box$

 $\Box 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0^{\Box}$

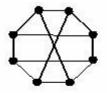
 $\Box 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0$

0 1 1 0 1 0 0 0

 $\Box 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0_{\Box}$

 $\Box 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \Box$

 $\Box 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \Box$


 $\Box \Box 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \Box \Box$

Найти радиус r(G) графа.

- 6. Выберите условия, каждое из которых является достаточным для того, чтобы граф с n вершинами был планарным (m число ребер):
 - a. $m\square 3n\square 6$
- b. граф не содержит подграфа, гомеоморфного графу K_{33} , и подграфа, гомеоморфного графу K_5

с. m = n - 1, и граф связный

- d. граф не содержит подграфа, изоморфного графу K_{33}
- e. m = 5 при n = 7
- 7. Является ли планарным следующий граф:

- а. да
- b. нет
 - 8. Сколько граней у плоского графа:

- 9. Для функции f, заданной вектором $\Box_f\Box\Box 0110\Box$, определить, является ли она:
- а. линейной
- b. монотонной
- с. самодвойственной

- d. функцией из класса T_0
- e. функцией из класса T_1

10. Полна ли система функций $\{F, G, H\}$ (принадлежность функций классам T_0, T_1, L, M, S отображена в таблице).

Функции	T_{0}	T_{1}	L	M	S
F		+	1.51	(20)	
G	<u> </u>	+	+	+	<u>a</u>
H	(-	=	23=4	=	+

- а. да
- b. нет

Вариант 3.

- 1. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x|x>4\}, B=\{3,5,7\}, C=\{1,2,4,6\}.$ Найти $C\square B$ (Указать правильные варианты ответов). а. U
- b. {3,5,7}
- с. 🛛
- d. $\{3,5,7,1,2,4,6\}$
- e. $\{1,2,3,4,5,6,7\}$
- 2. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x|x>4\}$, $B=\{3,5,7\}$, $C=\{1,2,4,6\}$. Найти декартово (прямое) произведение $B\square D$, где $D\square C\square A$ (Указать правильные варианты ответов).

Варианты ответов:

- a. $\{1,2,3,4,5,7\}$
- **b.** $\{(3,1),(5,1),(7,1),(3,2),(5,2),(7,2),(3,4),(5,4),(7,4)\}$
- c. $U \{4\}$
- **d.** $\{(1,3),(2,3),(3,4),(1,5),(2,5),(4,5),(1,7),(2,7),(4,7)\}$
- e. $\{(3,1),(3,2),(3,4),(5,1),(5,2),(5,4),(7,1),(7,2),(7,4)\}$
- **f.** □
- 3. Справедлив ли дистрибутивный закон?

 $A \square B \square C \square (A \square B) \square (A \square C)$

- **а.** да
- **b.** нет
- 4. Сколькими способами можно разделить 8 шахматистов на две команды по 4 человека? (Ввести ответ в виде числа)
 - 5. Граф G задан следующей матрицей смежности:
 - $\Box 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ \Box$
 - $\Box 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0^{\Box}$
 - $\Box 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0$

 - $\square 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0_\square$
 - $\Box 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0_{\Box}$

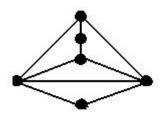
 $\Box 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \Box$

 $\Box 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \Box$

 $\Box\Box0\ 0\ 0\ 0\ 0\ 1\ 1\ 0^{\Box}\Box$

Найти диаметр d(G) графа.

6. Выберите условия, каждое из которых является достаточным для того, чтобы граф с n вершинами не был планарным (m - число ребер):


- а. граф содержит подграф, изоморфный графу K_5
- b. m = 10 при n = 20
- с. граф содержит подграф, гомеоморфный графу K_6
- d. $m\square 3n$
- e. m = 10 при n = 5

7. Является ли планарным следующий граф:

- а. да
- b. нет

8. Сколько граней у плоского графа:

- 9. Для функции f, заданной вектором $\square_f\square\square 1011\square$, определить, является ли она:
- а. нелинейной
- b. монотонной
- с. самодвойственной
- d. функцией из класса T_0
- e. функцией из класса T_1
- 10. Полна ли система функций $\{f, g, h\}$ (принадлежность функций классам T_0, T_1, L, M, S отображена в таблице).

Функции	T_{0}	T_{1}	L	M	S
f			+	-	+
g	+	+	+	+	+
h	+	÷	=	.=:	+

- а. да
- b. нет

Вариант 4.

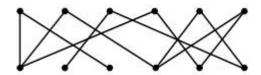
1. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества

$$A=\{x | x < 5\}, B=\{2,4,5,6\}, C=\{1,3,5,6\}.$$

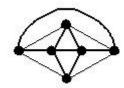
Найти $C\square B$ (Указать правильные варианты ответов). а. $\{1,2,3,4,5,5,6,6\}$

- b. {6,5}
- c. $\{1,2,3,4,5,6\}$
- d. $\{x | x < 7\}$
- e. {5,6}
- 2. Справедлив ли дистрибутивный закон?

$$A\Box(B\Box C)\Box(A\Box B)\Box(A\Box C)$$


- **а.** да
- **b.** нет
- 3. Справедлив ли дистрибутивный закон?

$$A\square(B\square C)\square(A\square B)\square(A\square C)$$


- **а.** да
- **b.** нет
 - 4. Граф G задан следующей матрицей смежности:

 $\Box 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\Box$

- 5. Сколько существует неизоморфных деревьев с 6 вершинами?
- 6. Пусть граф G с n вершинами является деревом. Тогда: (Выберите для G верные утверждения)
- а. число ребер m = n 1
- ь. граф связный
- с. граф не содержит циклов
- d. граф планарный
- е. граф не эйлеров
- f. есть вершина степени 1
- g. есть вершина степени больше 1
- 7. Является ли планарным следующий граф:

- а. да
- b. нет
- 8. Сколько граней у плоского графа:

- 9. Для функции $f \square x \square y \square z$ определить, является ли она:
- а. линейной
- b. монотонной
- с. самодвойственной
- d. функцией из класса T_0
- е. функцией из класса T_1
- 10. Верно ли, что:

 $T_0S\square T_1$

а. да

b. нет

Вариант 5.

1. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x|\ x<4\},\ B=\{2,4,5,7\},\ C=\{1,2,5,6\}.$ Найти $A\square B$ (Указать правильные варианты ответов).

- a. $\{1,2,3,4,5,7\}$
- b. $\{1,2,2,3,4,5,7\}$
- c. {2}
- d. {5,6}
- e. $\{x | x=2\}$

2. Справедлив ли дистрибутивный закон?

 $A\square(B\square C)\square(A\square B)\square(A\square C)$

- **а.** да
- **b.** HeT
- 3. Справедлив ли дистрибутивный закон?

 $A(B\square C)\square AB\square AC$

- а. да
- **b.** нет
- 4. Граф G задан следующей матрицей смежности:

- 5. Сколько существует неизоморфных связных графов с 5 вершинами и 4 ребрами?
- 6. Пусть граф G с n вершинами является несвязным. Тогда: (Выберите для G верные утверждения.)
- а. число компонент связности всегда равно 2
- ь. число компонент связности может быть равно 2
- с. степень каждой вершины не превосходит n-2
- d. число компонент связности больше 1
- е. граф не может быть двудольным
- f. граф планарный
- g. граф не может быть деревом
- 7. Является ли планарным следующий граф:

- а. да
- b. нет
- 8. Сколько граней у плоского графа:

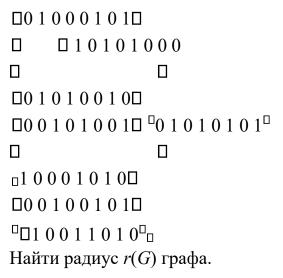
- 9. Для функции $f \square xy \square z \square 1$ определить, является ли она:
- а. линейной
- b. немонотонной
- с. самодвойственной
- d. функцией из класса T_0
- е. функцией из класса T_1
- 10. Верно ли, что: $T_0T_1L\square S$ а. да
- b. нет

Вариант 6.

1. Дано универсальное множество $U=\{1,2,3,4,5,6,7\}$ и в нем подмножества $A=\{x|\ x>4\},\ B=\{3,5,7\},\ C=\{1,2,4,6\}.$

Найти $B\square A$ (Указать правильные варианты ответов). a. $\{7,5\}$

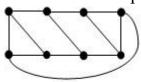
- b. {3,5,6,7}
- c. $\{5,7,5,7\}$
- d. {5,7}
- e. $\{x | 2 < x < 8\}$


2. Справедлив ли дистрибутивный закон?

 $A(B\square C)\square AB\square AC$

- **а.** да
- **b.** нет
- 3. Справедлив ли дистрибутивный закон?

 $A\Box(B\Box C)\Box(A\Box B)\Box(A\Box C)$


- **а.** да
- **b.** HeT
- 4. Граф G задан следующей матрицей смежности:

- 5. Сколько существует неизоморфных связных графов с 5 вершинами и 5 ребрами?
- 6. Пусть граф G с n вершинами является двудольным. Тогда: (Выберите для G верные утверждения.)
- а. в нем нет циклов четной длины
- b. в нем могут быть циклы четной длины
- с. в нем все циклы имеют четную длину
- d. граф связный
- е. степень каждой вершины не превосходит n-2
- f. граф содержит цикл, если каждая доля содержит не менее двух вершин
- g. граф планарный
- 7. Является ли планарным следующий граф:

- а. да
- b. нет
- 8. Сколько граней у плоского графа:

- 9. Для функции $f \square xy \square xz$ определить, является ли она:
- а. линейной
- b. монотонной
- с. несамодвойственной
- d. функцией из класса T_0
- е. функцией из класса T_1
- 10. Верно ли, что:

 $MS\square T_0$

а. да

b. нет

- 1. Задача коммивояжера о построении гамильтонова цикла.
- 2. Алгоритм поиска в ширину в неориентированном графе.
- 3. Алгоритм построения остовного дерева минимального веса в неориентированном графе.
- 4. Поиск кратчайших путей в графе методом Флойда.
- 5. Определение максимального потока в сети.
- 6. Применение теории графов в технике.
- 7. Алгоритм поиска в графе цикла максимальной длины (по количеству ребер).
- 8. Алгоритм проверки неориентированного графа на наличие в нем циклов.
- 9. Алгоритм проверки графа на эйлеровость. Построение эйлерова цикла.
- 10. Алгоритм поиска в глубину в неориентированном графе.
- 11. Алгоритм проверки планарности графа по критерию Понтягина Куратовского.
- 12. Методы определения связности вершин графа.
- 13. Поиск кратчайших путей в графе методом Форда-Беллмана.
- 14. Поиск кратчайших путей в графе методом Дейкстры.
- 15. Поиск кратчайших путей в графе методом динамического программирования.
- 16. Синтез логической схемы.
- 17. Системы счисления. Арифметические действия в двоичной системе счисления.
- 18. Алгоритм проверки двух графов на изоморфизм.
- 19. Разработка структурного автомата в заданном базисе.
- 20. Алгоритм проверки ориентированного графа на соответствие гипотезе Адама.
- 21. Сбалансированные бинарные деревья.

Построение совершенного парного сечения для двудольного графа

Вопросы к зачету

- 1. Множества, подмножества мощностное множество. Способы их задания. Равенство множеств.
- 2. Объединение и пересечение множеств. Свойства этих операций над множествами.
- 3. Дополнение и разность множеств. Законы де Моргана.
- 4. Декартово произведение множеств.
- 5. Бинарные отношения на множествах. Инверсия и композиция бинарных отношений. Свойство инверсии композиции двух бинарных отношений.
- 6. Булева матрица бинарного отношения, заданного на конечном множестве. Связь операций над матрицами и операций над отношениями.
- 7. Отображения (функции). Инъективные, сюръективные и биекции. Их свойства.
- 8. Свойства бинарных отношений (рефлексивность, иррефлексивность, симметричность, антисимметричность и транзитивность). Отношения порядка.
- 9. Отношения эквивалентности, его связь с разбиением множества.
- 10. Мощность множества. Счетные множества и их свойства.
- 11. Множества мощности континуум и их свойства.
- 12. Элементы комбинаторики. Правило суммы и произведения.
- 13. Размещения и перестановки.
- 14. Сочетания. Мощность множества всех подмножеств.
- 15. Мощность декартового произведения п конечных множеств.
- 16. Высказывания и операции над ними.
- 17. Равносильные формулы логики высказываний.
- 18. Дизъюнктивные и конъюнктивные нормальные формы.
- 19. Проблема разрешимости в логике высказываний. Теоремы о тождественно истинной и тождественно ложной формуле.

- 20. Совершенные дизъюнктивные нормальные формы (сднф). Алгоритм нахождения сднф для формулы логики высказываний.
- 21. Совершенные конъюнктивные нормальные формы (скнф). Алгоритм нахождения скнф для формулы логики высказываний.
- 22. Связь булевых функций и формул алгебры высказываний.
- 23. Алгебра Жегалкина.
- 24. Класс линейных функций. Лемма о нелинейнных функциях.
- 25. Класс монотонных функций. Лемма о немонотонных функциях.
- 26. Класс самодвойсвенных функций. Лемма о несамодвойственных функциях.
- 27. Функциональная полнота системы булевых функций в слабом смысле.
- 28. Теорема Поста о функциональной полноте.
- 29. Графы. Их изоморфизм. Подграфы. Мультиграфы. Псевдографы. Ориентированные графы.
- 30. Способы задания графов.
- 31. Маршруты. Цепи. Циклы. Связность.
- 32. Эйлеровы графы. Необходимое и достаточное условие эйлеровасти графа.
- 33. Гамильтоновы графы. Достаточное условие гамильтоновости графа.
- 34. Алгоритм Краскала для отыскания дерева минимального веса.
- 35. Фундаментальная система циклов и разрезов для остовного дерева Т связного графа G. Диаметр графа.
- 36. Планарные графы. Формула Эйлера.